
flJSBORNE

UNDERSTANDING THE

MICRO
Judy Tatchell and Bill Bennett

Edited by Lisa Watts

This section of the book was designed by Round Designs and Roger Priddy and
illustrated by Tim Cowdell, Graham Round, Jeremy Banks, Graham Smith, Martin
Newton, Ian Stephen, Kuo Kang Chen and Martin Salisbury.

Contents
4 Meet the micro
6 Programming a micro
8 Looking at the keyboard

10 Programs for the micro
12 Writing your own programs
14 Running programs
16 Saving programs
18 Micro pictures
20 Micro sound
22 Inside the keyboard
24 Inside a chip
26 How chips work
28 More about chips
30 Story of the micro
32 Computer chains
34 Micro control
36 Other micro users
38 Adding to your micro
40 Buyer’s guide
47 Micro words

This part of the book is for anyone who
wants to know about microcomputers. It

shows what you can do with them, how
you use them, and how they work. It
explains computer jargon so you can go

on to read and understand more about

computers.
The book then describes how a micro

works, and how it makes pictures and
different sounds. It shows the inside of a
micro with its tiny silicon chips which do
all the processing. You can also find out
how some micros can be linked to other
computers thousands of miles away to
bring all sorts of information into your own
home. Micros can be used to control
robots, or other electronic equipment,
such as model railways, too.

Microcomputers are small, multi¬
purpose computers. You can play games
on them, draw pictures and sometimes
even make sounds and music. They can
also do complicated sums very quickly,
and you can keep diaries and catalogues
of records and slides, or anything else you

Although to begin with you only need an
ordinary television set to use with a micro,
you can buy lots of other pieces of
equipment to connect to it - a light pen for
drawing pictures directly on the screen,
for instance, or special attachments for
using with arcade-type games. The book
describes these, too.

The first part of the book explains how
to use a micro and how you give it a
program telling it what to do. There is an
introduction to writing programs in BASIC,
which is the programming language most

micros understand, and there are lots of
programming hints. If you have access to a
micro, there are some games programs
you can try out.

On page 40 there is a guide to buying a
micro. It tells you about some of the most
popular home computers so you can
compare them and explains the
terminology used to describe a computer.

Meet the micro
These two pages show a micro and
how to set it up. Not all micros look
exactly like the one in the picture.
Most home computers, though, consist
of a keyboard that you connect to a TV.
Some micros have screens specially
designed for them. These are called
visual display units (VDUs), or
monitors. All new micros are supplied
with manuals to tell you how to use
them. Before setting up a micro, check
its manual for special instructions.

Keyboard
You give the micro
instructions and information
by typing on the keyboard. TV and the mains plug into the

Keyboard

Where the micro does its work

Output

4

The “brain” of the micro is usually inside
the keyboard. It consists of a central
processing unit (CPU) which does all the
work, and a memory. Before it can do
anything the CPU needs a set of

instructions called a program. This is
Stored in the memory along with the
information, or data, you want it to work
on. Programs and data are called input.
The results are called output.

Lead connecting
micro to TV.

Screen

Everything you type on the keyboard, and the results of
the micro’s work, appear on the screen. The micro can
also draw pictures and make shapes on the screen. Most
micros can make coloured pictures if they are
connected to a colour TV.

Power supply box

vto set up a micro

Power supply

The power supply box reduces the power
from the mains to a level the micro can
work on, and keeps the power supply
smooth.

Most micros have three leads, one to link
the keyboard to a TV, one to plug the
keyboard into the mains electricity
supply, and a third to connect it to a
cassette recorder. *

To connect the keyboard to a TV, pull the
aerial plug out of the TV. Then plug one
end of the micro’s TV lead into the hole
marked TV on the keyboard and the other
into the UHF socket on the TV.

Plug one end of the mains lead into the
power socket on the keyboard and the
other end into the mains at the wall. Make
sure the TV is also plugged in, then switch
them both on.

Select a TV channel which you are not
using for TV programmes. Time the TV
until the micro’s “ready” signal appears on
the screen. These signals vary from micro
to micro.

‘You use the cassette recorder to store programs for the micro. This is explained on page 16.

Programming a micro
Whether you want to use your micro to
play a space game or simply to add
some numbers together, you have to
give it a program of instructions to tell
it what to do. There are special
computer languages for writing
programs. They consist of words and
symbols the computer can recognize
and convert into its own electronic

code, called machine code. Program
instructions are stored in the
computer’s memory and then carried
out by the CPU. Programs and data
which you give the micro are called
computer software. Parts of the micro
that you can touch, like the keyboard
and the screen, are called computer
hardware.

A computer can only carry out a task if it is
told exactly what to do in the right order.
This program tells a robot with a computer

brain how to paint a window.

The program would not work as there is
no instruction telling the robot to pick up
the paint pot and brush before climbing
the ladder. The robot only does what it is
told to do.

This is part of a program* in BASIC, the
language most micros use. A computer
contains a set of instructions called an
interpreter which translates the
programming language into machine

code.

All the work inside the computer is done
in machine code. Each “word” of the code
consists of patterns of pulses in the
electric current flowing round the
computer.

‘This program is printed out in full on page 12.

The computer's memory

The temporary memory is called RAM
(random access memory). It is
sometimes called a read/write memory.
Everything you put into the micro is
stored or “written” in here for you to
“read” or refer to, and you can also
change it.

The permanent memory is called ROM
(read only memory). The name means
that the micro can only take, or “read”,
information from it. You cannot store
extra information there. The interpreter
is stored in the ROM.

RAM is like a notepad. The
micro can write in it as well
as read from it. It is rubbed
out whenever the micro is
switched off.

ROM is like an instruction
manual. The micro can only

extra rK^J

A computer has two kinds of memory.
One is a permanent store of instructions
which tell it how to work. The other is an
empty memory where your program and
data for a job are stored temporarily. Each
time the micro is switched off, the memory
empties again.

Memory size

Micros come with different sized
memories. Memory size is measured by
the number of machine code “words” that
can be stored. Each code word is called a
byte and 1024 bytes are called a kilobyte,
or IK.

One kilobyte is about the same as 500
BASIC words or symbols. It is enough to
store simple programs. More advanced
programs are longer and might need 8K or
16K of RAM. You can buy extra RAM,
called add-on RAM packs, for most
micros.

Looking at the keyboard
The keyboard of a micro usually looks
much like a typewriter keyboard. It
has the same letters and numbers,
arranged in the same order. A micro
also has some extra keys, though, for
giving special commands in BASIC.
The micro receives different
electrical messages from each key. If

Letter keys
On most computers you
type in a program using the
symbol keys and spelling
out the words with the letter

keys.

you type in something the micro does
not recognize, a message telling you
so will appear on the screen saying
"Error" or "Mistake". Everything you
type is stored in the micro's temporary
memory (RAM), and also displayed on
the screen for you to check. These two
pages show two different keyboards.

Space bar
You press this to get a space
between words or symbols.

Using the shift key

Most micros automatically
make capital letters on the

screen and cannot make
small letters.

Some micros, though, make
small letters. To make a
capital letter, you hold the
shift key down while you
press the letter key.

Where there are two
symbols on the same key,
you use the shift key to get
the top one. Pressing a key
without the shift key gives
the lower one.

Programmable keys
These are special keys
which you can program
yourself to do special jobs
such as producing certain
colours each time they are
pressed. Not all micros have
these keys.

The figure zero on a computer
usually has a stroke through it
to distinguish it from the capital
letter O.

Cursor control keys

The cursor is a little marker If you want to change or
that moves across the delete something, you can
screen as you type, to show move the cursor back over

your typing using the cursor
control keys.

where the next letter will
appear.

Another micro

This keyboard is about a quarter of the size of the keyboard
on the left. The design of the typing area can determine the
size and shape of a micro, as the parts inside are very small.

Also, there is usually room on the keyboard for sockets into
which you can plug extra things like a printer
or a cassette recorder. These are

described later in the book.

Return key
At the end of each line
of the program you press
this key to start a new line.
It also enters the line you have

just typed into the micro’s
memory. It is sometimes
called NEWLINE or ENTER.

>elete key
You can rub out mistakes
you have typed using this
key. On some micros it is
called RUBOUT or ERASE, want from a key.

This kind of micro has calculator-like keys which do not
move much when you press them. Most of the keys

carry complete BASIC words so you do not have to
spell them out letter by letter. The keys have words,
letters and symbols on them, and there are two
different shift keys for selecting which message you

Programs for the
micro
You can buy programs in magazines,
books, recorded on cassette tape or
disk - or you can learn to write your
own. Programs printed out line by line
are called listings. Programs on
cassette can be loaded into a micro
using a cassette recorder. The
program must be written in the correct
language for the micro. This is usually
BASIC, but there are several different
'dialects" with different commands.
The program will not work if the
dialect is wrong or if it has a mistake.

You can buy all kinds of games
programs from arcade-type games with
colour pictures and exciting sound
effects to more traditional ones like
chess.

Whereto get programs

You can buy microcomputer magazines
containing listings at most newsagents.
Some are produced specifically for one
kind of micro. Others have programs for
several different micros.

Another quite cheap way of getting
programs is to buy collections of them in
books. These are usually games programs
written for one particular micro.

'Typing in listings
helps you get to know
BASIC and you learn I
to spot bugs and U
adapt programs if the JHSLl—\
dialect is wrong for J Basic
yourmicro. Games

Often the programs ii^
magazines have not
been thoroughly
tested and contain
mistakes, called
“bugs”, which stop i
the programs
working. Programs in
books are usually j
more reliable.

PrestelTV

You can sometimes get programs
displayed on your TV screen. Your TV

needs to be a special one that can be
linked by telephone to a Viewdata system,
like Prestel. These are computerized
information centres. You choose which
page of information you want shown.

For some micros you can buy programs in
cartridges like these. Youplugthe
cartridge into the micro and the program
is automatically loaded into the micro’s
memory.

You can organize your home life with Educational programs can help with all
programs for keeping accounts and kinds of learning, from spelling and

diaries, as well as catalogues for things maths to speaking a foreign language,
you collect. These are simpler versions of Pictures on the screen often help make
programs used in business. things clear and more interesting.

Iser groups

>gro i^5S3esg«w

? sstUr
Floppy disks

User groups provide an opportunity to
meet other people interested in micros
and to exchange programs and ideas.
You can find out if there is one in your
area by writing to a micro magazine, or
look at the lists of societies at your local

library.

You can buy programs recorded on
cassette, for which you need a cassette
player. You can also buy them on floppy
disk. These are made from the same
material as cassette tapes, but are more

expensive and you need a disk drive to

use them. Shops and mail order
companies sell cassettes and disks. You
can find the names of suppliers in micro
magazines and write off for catalogues. 11

Writing your own
programs
Most micros are designed to understand
BASIC, which is a good, general-purpose
programming language. There are lots of
other languages, though, and some peopl<
think Pascal is better. There are two
programs in BASIC on this page. BASIC
consists of symbols and words, and is
quite easy to learn. The best way to
start is to read lots of programs and it
helps if you have a micro to try them
out on. Most micros' manuals explain
BASIC. You can also buy books on
how to program, or you can get
instruction courses on tape or disk
to run on a micro.*

You can find out what some BASIC
terms mean in the Password Program

. on the right. This program is to
(stop spies infiltrating a secret

jety..

Each line of the program is numbered.

The numbers usually go up in tens so you
can insert extra lines into the program
later, if necessary, without having to
renumber all of them. The micro follows

To use, or run, the program, you type it out
exactly as it is here. At the end of each line
you press the key called RETURN (or
ENTER or NEWLINE on some micros).
Then you type RUN and the micro will
carry out the program. _

The first stage in writing a program is to Then break the idea down into steps and
write down a detailed outline for the work out what the computer must do at
program in English. This outline is for a each stage. List the steps in the correct

12 computer game. order.

PRINT tells the micro to display
everything inside the quotes on the
screen.

INPUT tells it to expect a message from
you and store it in a place in its memory
called P$.

$ represents a “string” of characters.

CLS clears the screen.

FOR... TO tells the micro how many
times to carry out the instructions in lines
60 to 100.

.IF... THEN tells the micro what to do IF a
certain condition is true. In this case,
GOTO tells it to jump to line 130. If the
condition is not true, the micro carries on

to line 90.

END tells the micro it has done all it has to
do and the program is finished.

I print “SPLASH GAME"

« ^™SS£S55Str-
70

HALT! WHAT IS THE PASSWORD?

YOU CAN HAVE TWO TRIES.

7EGGANDCHIPS

PRINT “DUCKPOND. you MUSI

S>
110FORG=lTO5 I

120 StHENG=5;GOTO210
»° "AFTER-;

When you run the program, the micro asks
you for the password and stores it in its
memory. Then it asks for a guess at the
password. The word INPUT in line 70
makes a question mark on the screen to
show the micro is waiting for a message
from you. It compares the guess with the
word in its memory and if it is the same it
prints ENTER, FRIEND.

These programs will not work on all
micros because of the different
dialects of BASIC. The most likely
commands to need changing are CLS
which tells the micro to clear the
screen, and RND which tells it to pick
a random number. If you have a micro
and the program does not work, look
in the manual to find how to alter it.

EHisS
PRINT G$

PRINT “SPLAAAAAAASH

PRINT “YOU HAVE GOT WET.

PRINT “SCREEEEEEEECH ■ • •
Styoustoffedwtime.

10U ir

160 PRINT G$

no NEXTG

180 “

1Q0

200 END

210
220
230 END

splashgams

GOKArTharG 0,'j THe

BEFORET

JUS

Now translate each step of the program
into BASIC. Type it into the micro line by
line, checking the lines to make sure they
are correct.

This is what happens when you run the
program. The letters after the question
marks are your guesses. There is more
about running programs over the page.

See pages 49-96 for more about programming.

Running programs
When you type in a listing, all the lines
of the program go into the micro's
memory. Instead of typing, you can
“load" a program, that is, put it into the
micro by using a cassette recorder.
Below there are some hints on typing
in programs and loading them from
cassettes. If the program does not

Punctuatiotfand spacing are as important
to the micro as letters and numbers, so you
have to type in a listing very carefully.
Each line will appear on the screen as you
type for you to check.

work when you type RUN, it probably
has a bug (mistake) in it. Some bugs
cause the program to "crash” and it
stops working. Others cause
unexpected things to happen in the
program. You can find out about some
common bugs on the opposite page.

If the program does not work when you try
to run it, you can type LIST to display it on
the screen. You can then check it again for

bugs and correct it before trying again.

A program is saved on cassette tape as a
series of high-pitched bleeps. To load it
into the micro you connect up the cassette
recorder as described in the micro’s
manual. You need to adjust the volume to 7
or 8 and the tone to a high treble setting so
the micro can pick up the sounds.

When you type LOAD and the program
name in quotes, and press PLAY on the
recorder, the program should be copied
into the micro. This can take a few
seconds or minutes, depending on the
length of the program. If the program does
not load successfully, the tone and volume
settings might need adjusting:

Bugs in programs

10 PRINT "HOW:

RIVER?

SYNTAX ERROR. No PRINT
statement to tell the micro to
put this on the screen. .

20 “YOU HAVE FIVE
GUESSES.”

30 LETA=6

SO ONPUTG SYNTAX ERROR. The word ■
is wrongly spelt so the micro
does not understand.

NO SUCH LINE. There i
line 130 in this program.

70 PRINT “WRONG”
NEXTN

This picture illustrates a program which
has lots of bugs. The most common bugs
are typing mistakes. If you do not type
BASIC correctly the micro will not
understand the commands. This kind of
bug is called a syntax error.

MISSING". The words after PRINT np,
should be enclosed in quotes. "ft

Most micros send error messages to the
screen when they come across something
they do not understand. Some do this as
you type in the program. Others wait until
you RUN or LIST the program. F
some examples of error message

CAN’T MATCH FOR. FOR..
TO.. NEXT are part of the
same command telling the 4
micro to repeat this and the
next four steps five times. (
It is called a loop. The NEXT 1
part of the command, which J
should be line 80, has no line <
number, so the micro does not
recognize it.

Here is the correct program:
10 PRINT “HOW MANY CROCODILES

IN THE RIVER?”

20 PRINT “YOU HAVE FIVE GUESSES.
30 LET A=6
40 FORN= 1T05
50 INPUT G

60 IFG=ATHENN=5: GOTO 110
70 PRINT “WRONG”
80 NEXTN
90 PRINT “SNAP! YOU HAVE BEEN

EATEN UP!”

100 END
110 PRINT “RIGHT. NOW PADDLE

AWAY FAST!"
120 END

90 PRINT “SNAP! YOU
L HAVE BEEN EATEN UP

100 END

I* ^
* 110 PRINT “RIGHT. NOW

PADDLE AWAY FAST!

j-Q20 OK-THAT’S ALL

SYNTAX ERROR. This is not
1 in BASIC so the micro does not
^ understand. It should read

END.

Saving programs
After you have typed a program into
the micro, you can copy it on to
cassette tape. This is useful as the
program in the micro's random access
memory is lost when it is switched off.
You can also save programs on floppy
disks, using a disk drive, which is
better if you want to store a lot of
programs. You can make paper

Cassettes

copies with a printer, too.
A cassette recorder, disk drive or

printer plugs into a socket on the micro
called a port. This contains special
circuitry called an interface which
converts the micro's own machine
code signals into the kind of electrical
signals the device uses.

A tape counter is
useful for noting where
each program begins on the tape.

lort tapes are best as they
store fewer programs so it
does not take so long to find the
one you want.

16

For most micros you can use an ordinary
portable cassette recorder, but a few
need their own special recorder. You can
buy specially made “data tapes” for
recording programs, but any good quality

tapes will do.

Saving and loading programs on cassette
can be quite tricky. If it does not work, the
“recording head” of the recorder may
need cleaning. If the program contains
bugs, the micro will not let the recorder

save it.

You connect the cassette

recorder to the micro as
described in the manual.
Make sure the leads do not
cross each other or you
might get interference.

Then you type SAVE and
the program name in quotes
on the keyboard and press
RECORD and PLAY on the
recorder to save the

program.

past the recording heads on
the cassette recorder, the
program is saved as a
pattern of magnetic dots on

the tape.

Printers

This printer is very fast
and gives good quality print-outs. and the print-outs are not sogood.

You can print out program listings, data
and sometimes even pictures with a
printer which you connect to the micro.
Most micros use a standard type of
interface called an RS232 inside the
connection.

Floppy disks

protective n*******™*,^
surface will be spoilt if you touch it.

Information saved by a printer is called
“hard copy”. You can make lots of copies
of the same program to distribute among
friends. Printers can work very fast. Some
expensive ones can print out several lines
persecond.

Disk spinning round
in its sleeve.

Floppy disks store programs in the same
way as cassette tape. The disk’s surface is
smooth, without grooves like a record.
Saving and loading take place inside
a disk drive which you plug into the micro.

The disk is spun inside the disk drive and
a “read/write” head moves rapidly over its
surface through a slot in the sleeve. This
head can “read” any data stored on the

disk and “write”

When you save a program you usually
give it a name. You need to keep a record
of program names as, when you want to
load a program and you give the micro the
name, if a letter or even a space is wrong
the micro will not recognize it.

When you load a program back
micro from tape or disk, a copy goes into
the micro's memory. You can then change
this copy or use different data without
altering the version stored on the tape or
disk. 17

See page 94 for more about saving and loading.

Pixels

In a graphics program you tell the micro
which pixels to light up by typing in their
co-ordinates. The co-ordinates for each
pixel show how far it is along and up the
screen, measured in numbers of pixels.

surface covered with a grid. You place
your picture on the grid, then trace over it
with a special pen. This automatically
gives the micro the co-ordinates for all the

Micro pictures
A micro makes pictures by lighting up
tiny areas called pixels on the screen.
Pictures made by a computer are
called graphics and you can give the
micro instructions for graphics by
typing in a program on the keyboard.
You can also make pictures by
drawing on the screen with a light pen,
or with a special piece of equipment
called a graphics tablet. You can find
out how these work below.

Lighting upthe

:o:b:o:o :o :j;| :|S :u :!

If you look closely at a computer picture
you can see all the pixels. Most computers
can make colour pictures if they are
connected to a colour TV or monitor, and
the pictures are made by lighting up areas
of pixels in different colours.

Characters (i,e. letters, numbers and
symbols) are also made up of pixels. A
micro divides the screen up into rows of
invisible squares and each character is
made by lighting up different
combinations of the pixels in a square.

Howto
make
pictures

Picture quali

:o:o: To light up each pixel separately needs
:: ::: a lot of memory so most micros deal

with them in groups. Each group is
controlled by a separate instruction

.iinone :: from the micro and all the pixels i
± group are the same colour.

liiiiai
The number of characters you can fit on
the screen depends on the number of
squares and this varies from micro to
micro. On a micro which divides the
screen into 30 columns and 20 rows, you
can fit 30 characters across the screen and

20 lines down.

A micro with a large memory can make
pictures with smaller groups of pixels
than a micro with a smaller memory.
This makes the pictures more realistic
and they are called “high resolution

graphics”.

Light pen

You can draw directly on the screen by
touching it with a light pen. As you draw a
line, it sends messages to the micro to fight
up the pixels along the fine. The pen can
‘•see’’ the beam which fights the screen
and it tells the micro the positions of the
pixels in relation to the beam.

A micro can make moving pictures,
called animations, by switching the
pixels on and off, and then on again in
the next position for the objects on the
screen. This happens so quickly it
gives the impression of movement.

“H1® a
HT"T

Micro sound \

I on cassette -
some programs
make screen
pictures at the
same time.

Another way to tell the micro which
notes to play is with a light pen. You
give the micro a program which makes
a stave (the lines for musical notes) on
the screen, then draw the notes you
want with a light pen.

More about sound

The vibrations in the air made by a
loudspeaker are called sound waves, and
different sounds have different shaped
waves. For instance, a loud, high note has
tall, squashed-up waves. The height of the
waves shows how loud the note is. The

Most micros can play tunes and make
sound effects, and some can even
speak words. Micros which can make
sounds usually have a special chip
called a synthesizer inside the
keyboard. For some micros you can
buy a synthesizer unit seoaratelv.

You can tell
to make by typing in a
as SOUND or BEEP, followed by |

numbers indicating the note you want
(e. g. C or B) and how long you want it
to be played. You can find out how the
micro makes sounds in this picture.

Making music

You can program a micro to play a tune
by giving it instructions for each note.
Some micros can also play chords and
harmonies. These have several
“voices” which can each be
programmed to play different notes at

the same time.

Micro s message
to the synthesizer Electric signal from

When you type in an instruction for a
sound the micro sends a message to the
synthesizer in machine code, telling it
which sound to make. The synthesizer
produces an electric signal which is
strengthened in an amplifier and then sent

You can program some micros
to make sound effects like
marching feet or a telephone
ringing.

WH+ATS
YO+UR
NA+ME

AMPLIFIER

LOUDSPEAKER^—^,
Some micros have a
loudspeaker in the keyboard.
Others use the TV loudspeaker
and you can control the volume
with the TV volume control.

Talking micros

TH+AT
F+AT
C+AT
EA+TS
RO+BO+TS

It is more difficult for a micro to speak than
make music as the sounds in words are
more complicated. Most words are made
up of several sounds, e.g. RO-BO-TS.
Micros which can talk have the word

sounds stored in machine code in a
special chip.

on to a loudspeaker. The signal makes the
loudspeaker vibrate and this makes the
sound. Different signals from the
synthesizer make the loudspeaker vibrate

at different rates and this makes different
sounds.

Using a synthesizer, the micro puts the
word sounds together to make words,
according to grammar rules stored in its
memory. This is called speech synthesis.
Micros with speech synthesizers are
useful for blind people who cannot see a
screen, or children who cannot read.

wavelength of the waves, that is, how close

together they are, shows how high or low
the note is (this is called the pitch). The
variations in the volume and pitch of a
sound over a period of time is called the
sound envelope.

It is much more difficult for computers to
understand speech. They have to be
programmed to recognize all the word
sounds. As people have different voices
and pronounce words differently, only a
computer with a huge memory can store
enough information. 21

Inside the keyboard
The picture on these two pages shows the parts inside a small computer. All
computers have the same basic parts as those shown here, although most are
more complicated and have more components.

The most important parts in the computer are the chips - the four black boxes
on legs. All the work inside the computer is done by electrical signals pulsing
through the chips and flowing along the metal tracks on the printed circuit
board. You can find out more about how the computer works on the next few
pages.

ROM chip Voltage regulator
This converts the 9 volts from the power
supply into the smooth, regular 5 volts
wliirhth«» micro uses.

The permanent program of
instructions telling the
computer how to operate is
stored in here.

Printed circuit board (PCB)
This has metal tracks laid out on its surface
and the electrical signals in the computer
flow along the tracks between the chips.
There are other electronic components

on the board called capacitors
and resistors and these help
control the flow of <n| |jj_

electricity.

Resistors •

RAM chip
This is the random access —'

memory, where the programs
and data you put into the
computer are stored.

J Looking at a chip

Chip of
silicon

A chip is a small box containing a tiny chip This picture shows the actual size of a
of silicon. The surface of the chip is chip. It is about as thick as a fingernail and
covered with further circuits which are may have as many as ten different circuits
minute and very complicated. The metal engraved in it. The proper name for a chip

legs on the chip’s case carry electrical is “integrated circuit” or IC.

22 signals to and from the chip.

Sinclair Computer Logic chip
This is a special chip which contains
extra operating instructions for this
computer.

Sockets for connecting the TV
and power supply and for other
equipment such as cassette
recorder or printer.

Modulator

This converts the
computer’s signals into

the TV can understand.

Capacitor

Microprocessor
This is the central

processing unit (CPU),
the control centre of the
computer. It carries out
the instructions in your

program and controls the
flow of information to the

RAM and TV screen. It
contains a quartz crystal

which pulses over
a million times a second
and regulates the flow of

electrical signals inside
the computer.

Edge connector

This is where you plug
in equipment such as

an add-on memory
pack or program

cartridge. Metal strips
at the edge of the

board carry electric
signals to and from

the memory or cartridge.

The circles show where the metal tracks pass
through the printed circuit board and continue
on the other side.

A really powerful computer, such as
those used by large companies, has
hundreds of PCBs covered with chips.
The PCBs are stored in cabinets and all
the cabinets may fill a room. This is
called a mainframe computer and it can
carry out many tasks at the same time.

More powerful computers

RAM chips

More powerful computers have larger
memories and more chips. The picture
shows the PCB of another micro with
about 40 chips on it. There are several
ROM and RAM chips and this gives the
micro a larger memory.

A minicomputer is a smaller version of
a mainframe. It has several cabinets
with PCBs and it is usually specially
designed to do one particular kind of
work, such as accounting or storing the
information for a databank.

Inside a chip
Each of the chips in a computer has
circuits specially designed for the
particular jobs it has to do. The picture
on the right shows two silicon chips,
much enlarged. One is a
microprocessor and the other is a
ROM chip and you can see the
patterns of the different circuits on
each chip. The circuits are so small
and intricate that when they are tested
during manufacture up to half of them
have to be discarded because they
are faulty.

How chips are made^ Rod of
silicon

’ '

Microprocessor
A microprocessor is sometimes called
computer on a chip. It has several
different kinds of circuits and in fact ca
do the work of a tiny computer. The
microcomputer is named after the
microprocessor.

These are RAM circuits for the
microprocessor’s temporary
memory. Information the
microprocessor needs for a
particular job is stored here.

Chips are made from very pure silicon
crystal. The crystal is shaped into rods and
then cut into slices about 100mm in
diameter and 0.5mm thick. Each slice will
make about 500 chips. Silicon is made by
purifying sand, and so the chips are quite

This is a ROM circuit. It L
contains instructions telling the \
microprocessor how to
operate.

The circuits on the microprocessor are
connected by tracks called “busses”.
Tracks which continue on to the printed

circuit board to connect the
microprocessor to other chips are also

called busses.

Nowadays computers help to design The circuit designs are placed on the

circuits for chips. Here, a light pen is being chips by a photographic process and the

used to make alterations to a circuit slices of silicon are put in a furnace. There

design. Next it will be reduced in size to fit the circuits are chemically etched into the

IOther uses of microprocessors

_All the computer’s calculating
and processing is done in

Ste^S^-jthe arithmetic and logic
Ml unit circuits (ALU).

J The clock Microprocessors are used as control
-controls the mechanisms in all sorts of equipment.

^travel round ^microprocessor. They are tiny and very light, and so can be
" put m thmgs like cameras, watches and

r Memory chip pocket calculators.

The circuits on a memory chip are like
hundreds of little boxes. On a ROM chip,
each box contains a piece of information,
but on a RAM chip the boxes are empty
until you put the information in.

Probes

Many different circuits can be etched into
the same chip, and the process can take
several weeks. The finished chips are
tested on the slice with tiny probes under
a microscope, and faulty ones marked.

Microprocessors have replaced old-
fashioned, bulky electronic devices in
many everyday things such as washing
machines and telephone switchboards.
They are more efficient and reliable.

The silicon slices are then cut up into
individual chips with a diamond saw and
the faulty ones thrown away. The perfect
chips are then packaged into protective
cases which can be fastened on to a PCB.

How chips work
The circuits in a chip contain
thousands of tiny components called
transistors through which the current
flows in rapid pulses. Some of the
transistors are combined to form
"gates". Some gates allow pulses
through and some do not. This creates
patterns of pulse signals and "no¬
pulse" signals, which make up
machine code. The no-pulse is just as
important as the pulse signal.

(Ix8)+(lx4)+(0x2)+(lxl)= 13
13 is written as 1101 in binary.

Machine code is made up of only two
signals - pulse and no-pulse. Codes made
up of two signals are called binary codes.
The signals are represented by 1 and 0.
Below you can see how binary works.

(4x 1000)+(0x 100)+(2x 10)+(lx 1) = 4021

Binary numbers are made up from two
digits, 0 and 1. They are written in columns
of ones, twos, fours, eights, and so on. You
make up the numbers by putting Is and Os
in the correct columns.

The decimal counting system we use
works on the same principle as binary, but
we use ten digits (0 to 9), probably
because we have ten fingers. Decimal
numbers are written in columns of ones,
tens, hundreds, and so on.

More about machine code

One bit

Streams of bytes represent all
the information a computer
uses.

Each pulse or no-pulse signal is called a
“bit”, short for binary digit. Most micros
use groups of eight bits to represent
pieces of information. A group of eight bits
is called a “byte” and is rather like a word
made up of eight letters.

There are 256 different ways of arranging
the Os and Is in an eight-bit byte. This is
enough to represent each symbol on the
keyboard by a single byte, with some left
over for things like colours and sounds.

Howthe computer
processes information

The computer processes information by
sending the pulse signals which make up
machine code bytes through different
combinations of transistors, called gates.

These alter the patterns of the pulses they

receive in a particular way. The points
where they receive signals are called
terminals. Some gates receive two signals
but only send on one. Here are three kinds
of gate:

An AND gate sends a pulse
on if it receives one at both
its terminals.

An OR gate sends a pulse on
if it receives one at both or
either of its terminals. *

A NOT gate has one
terminal. It only sends a
pulse on if it does not
receive one.

How the computer adds up

These pictures show how the computer uses a particular
arrangement of gates to add up any binary digits (1+1,
1 +0,0+1,0+0). The computer does all its processing
using sets of gates like this, though this is a very simple
example.

This is how the computer
adds 1 and 1.

AND gate
receives
two pulses
and sends
one on.

one pulse
and doesnot
send one on.

10 in binary is the
same as 2 in decimal.

Each pulse signal
sent to both
gates.

OR gate
receives two
pulses and
sends one on.

other binary digits are
added together in the same

set of gates.

Wires along
which the pulses
travel forward.

More about chips
The way a micro works depends on known as software compatibility,
the kind of chips it has inside it. Micros BASIC is more like human language
with the same microprocessor than machine code, so the micro
understand the same version of needs a large interpreter. Languages
machine code. The interpreter which like BASIC are called high-level
translates BASIC into machine code is languages. Low-level languages are
stored in the ROM. Micros with the more like machine code, and are
same ROM chip usually understand easier for the computer to translate,
the same dialect of BASIC. This is

There are lots of different kinds of apart just by looking at their outside cases,

microprocessors, but the two most The micro’s operating instructions stored
commonly found in home micros are the in the ROM chip have to be written in the
Z80 and 6502 chips shown here. The correct version of machine code, for
differences between them lie in their instance, in Z80 machine code for the Z80
circuitry, so it might be difficult to tell them microprocessor.

Inside the ROM
The ROM consists of tiny areas with by typing PEEK and an address. The
number addresses which each store one manual will tell you which addresses you
byte of information. You can ask a micro to can PEEK into. The byte will appear on the
show you the bytes stored in some areas screen as a decimal number.

The special program which handles the signal from the key and refers to a
running of a micro, called the monitor, is keyboard map to find which byte
stored in the ROM along with the represents that key. Most micros conform
interpreter. One of the monitor’s tasks is to to ASCII (American Standard Code for
detect which key on the keyboard has Information Interchange) for which bytes
been pressed. It receives an electrical represent which symbols.

Inside the RAM

System variables
This area contains information for the micro, such as where the
next character will appear on the screen.

istoi

The micro puts a machine code copy of what is displa

Calculator stack

Current line and work
space

This contains the line being typed.

The RAM is divided into areas storing different kinds of information. You can PEEK
into RAM in the same way as you can into ROM. You can also change the bytes stored
in some areas of RAM by typing POKE followed by an address and a number. (You
cannot do this with ROM as it is a permanent memory.) The micro’s manual will tell
you which areas of RAM you can POKE without interfering with its other jobs. You can
usually POKE into the “system variables” area, and you can store things in the spare

area, and retrieve them with PEEK.

Low-level programming

If you program a micro in machine code, it example. Programming in streams of
can act on the instructions immediately, binary digits is complicated, though, so
without first having to translate them. This you can use other low-level codes, such as
is useful in fast games programs, for hex or mnemonics, instead. These are like

Hex, short for hexadecimal, is a number A mnemonic code is a set of abbreviations
system based on 16 digits - 0 to 9, and Ato which stand for certain instructions to the
F which represent the numbers 10 to 15. micro. Each mnemonic sets off a particular
An eight-bit byte can be written as two hex chain of activity in the micro. Low-level

digits. You divide the byte into two groups codes are easier for the computer to
of four binary digits, and turn each group convert into machine code, so the
into a single hex digit. interpreter can be smaller. 29

The story of the micro
The first true electronic computers
were built in Britain in World War II.
Unlike earlier mechanical adding
machines, they were programmable
and had memories. These computers
were used by scientists to crack
enemy codes and plot the flight paths
of shells. Information about them was
kept top secret for many years.

transistor switches were invented. They
used valves instead. These were about
seven centimetres high and made of glass,

and there were about 18,000 in a
computer. They frequently failed, and
teams of engineers were needed to locate
dud valves in the complicated circuits.

By the 1960s, the US government was
competing in the space race and needed
small, powerful computers for their
spacecraft. They financed research into
“integrated circuits”, which were a new
invention and consisted of several
transistors combined in a tiny sliver of
silicon, nicknamed a chip.

When peace came, a few big
business corporations and
governments began to use computers,
but no one else could afford them.
Since then, computers have got
smaller, cheaper and more powerful.
This has led to the development of the
micro, which is a computer anyone
can use - not just scientists.

the USA. They did the same job as valves,
but were smaller, cheaper and faster.
Valve manufacturers lost their scientists to

new transistor companies. Soon
transistors were replacing valves in all
kinds of electronic equipment, such as

radios, as well as computers.

breakthrough, and led to a new science
called microelectronics. The main centre
of research was the Santa Clara Valley in
California, which became known as
Silicon Valley. Microelectronics
engineers learnt how to pack more and
more components on to the same chip.

The history of computers can be
divided into four generations,
each smaller and more powerful
than the last. Huge valve
computers were the first
generation. One of these was
called ENIAC. It was completed
in 1945 after taking two years to
build. The second generation
used transistors. Computers with
chips were the third generation
and the invention of
microprocessors and further
miniaturisation brought the
fourth.

A major breakthrough came in 1971 when
it became possible to place all the main
electronic parts of a computer on to one
chip. This was called a microprocessor. A
computer circuit that would once have
filled a whole room with thousands of
valves could now be contained in a 5mm
square silicon chip.

of microcomputers, which a small
business or even a single person could
afford. Micros were on the market by the
late 1970s. Now you can buy a micro the
size of a book which costs as little as a few
of the valves contained in one of the
earliest computers.

Computer chains
You can link a micro to another
computer anywhere in the world,
provided they have the necessary
connections and there is a way of
transmitting the signals between them
clearly. They can use existing means
of communication, such as telephone
lines and satellites. The computers
usually need special programs to help
them understand each other, as they
might use different languages or
dialects, or work at different speeds.
People link computers together to
share information or programs.
Anything in one computer’s memory
can be copieci into another.

Computers can be linked together in
“nets”, or networks, usually using a
telephone. You can find out how to do this
on this page. You need a password to tell
the other computer to receive your
messages. You can link up with any
computer equipment, for example, lots of
micros could share the same printer.

Micros can be linked using a telephone
and a device called a modem*. This
converts machine code signals into the
kind of electronic signals that
telephone lines can carry.

Sending signals around the
world

Computer signals can be sent by satellite
in the form of radio waves which bounce
off the satellite and land at a particular spot

■on earth. This kind of satellite also
transmits telephone calls and TV

programmes round the world.

New ways of sending electrical signals at
the speed of light are being developed
using fibre optics. Machine code signals
are converted to flashes of light and fibre
optic cables carry them overland or under
the sea to anywhere in the world.

/
: modulator/demodulator.

You could do your shopping by computer,
and in the future you probably will. You
link a micro to a shop’s computer and a
display of goods for sale appears on the
screen. You type in your order and give
your bank account number. The shop’s
computer arranges delivery and contacts
your bank to charge your account.

DEARJOHN,
PERHAPS YOU WOULD

LIKE TO EXPLAIN YOUR
BEHAVIOUR WITH THAT
BOWL OF SOUP

Micros linked by telephone can be used
as an electronic mail system. Instead of
writing a letter and posting it you can type
it out on your micro’s keyboard, dial a
connection with someone else’s micro and
leave the letter on the screen. This is much
quicker than using ordinary mail.

R5|iil
kMSSR [Bit t

mm
Business people can work at home using
micro in a network to communicate with c
central computer in their office. They will
have access to files and be able to send
messages to colleagues in the network.

Nowadays, more and more micros are
being connected to computerized
information centres called teletext
systems. With a worldwide network of
computers storing and exchanging
information, you can have almost any
knowledge at your fingertips.

Already in some schools, micros on the
pupils’ desks are connected up to a
central one. The teacher uses this to keep
in touch with what each pupil is doing and
to supply programs. The pupils can work
at their own speed.

Micro control
Most micros can control other Running a model railway
electrical equipment as easily as they
control their own screen or printer, Here is a railway circuit controlled by a

provided they have the right "ports", micro, which is connected to the track by

or sockets where you plug the a ^ea<^ ^rom control port. It sends

equipment in. The micro's machine to nack}° chan^e the points

code signals must be converted into a 311(181015 311(1813111116 tram’
form the equipment can use. This
conversion usually takes place at the
control port on the micro's keyboard,
the part which does the controlling is
the microprocessor.

Getting signals in and out
£ou plug the connecting

'.lead into the
control

port.

The micro needs a way of sending
signals out to whatever it is controlling,
and of getting progress reports back.
The control port contains the interface*
which handles this information. If your
micro does not have a control port, you
can usually buy one for it.

The micro controls the speed of the train
by varying the amount of power sent to it.
It will also count the nuhlber pf limes the .
train goes round the track arid clfifSegS '
programmed to stop it after a certain '
number.

1 Robots

Touch-sensitive
sensors.

The micro can use sensors to tell it what
is happening, for instance, if it needs to
know the position of something it has to
move. A robot arm controlled by a
micro might have touch-sensitive areas
to tell it when it contacts something, or it
might have a light-sensitive “eye”.

You can turn some micros into robots by
connecting a special metal “arm”, and
programming the micro to make it move
and pick things up. The microprocessor in
the micro acts as the “brain” of the robot,
using messages from sensors in the arm to
help work out the next move.

‘The connection which passes information between the i i and what it centre

Micros in space

The Space Shuttle carries a

microcomputer similar to an ordinary

home micro. Unmanned interplanetary

probes like the Viking and Voyager

missions to Mars and Saturn were

controlled by micros on board linked

by radio to large computers on earth.

These micros carry out complicated

calculations very quickly. They plot

courses and control engine thrust and

fuel consumption. They can monitor

experiments and supervise

photography. They radio reports to

Earth and receive instructions back.

When the train crosses a pressure-

sensitive sensor, a message is sent to the

micro telling it which part of the track the

train is on and which set of points it is

approaching. The micro has a program

(telling it what to do next.

Larger robots are used in factories. They

do lots of jobs, from moving heavy car

bodies about to putting together tiny

“Robot” is the Czech word for worker. It

was first used to describe artificial men by

the Czech playwright Karel Capek in the

mechanical parts. These are robots and 1920s. Robots can be used for boring or

not just machines because they can be dangerous jobs. They do not breathe, so

programmed to do different things and they can work in space or in mines where

can make some of their own decisions. there are poisonous gases.

Other micro users Weather forecasting

36

Micros are used for all kinds of jobs,
they are small and powerful and can
work on any information once it has
been converted into machine code.
They process information and
calculate much faster than a human.
They can store lots of information in a
small space, and have totally accurate
memories, unlike humans.

Micros are often used for analysing
data. They store sets of information
and compare it to input data.

r----
Micros in medicine

DOES YOCJR HEAD HURT?
YES
IS YOUR VISION AFFECTED?
YES
HAVEYOU EVER HAD
MIGRAINE?

As well as keeping medical records,
some doctors use micros to help with
their diagnoses. A patient types in
answers to questions and the micro
compares them to lists in its memory. It

gives possible diagnoses and cures.

Staff at the Hammersmith Hospital in

London developed a micro-based
system to care for premature babies
who have difficulty breathing and need
their lungs artificially inflated. Too
much air forced in can damage the
lungs. Too little can cause brain
damage. The micro monitors a baby’s

lungs so it gets just enough oxygen.

process data received from instruments,
and send the results to a central
meteorological office.

micros to communicate. There are special
keyboards for semi-paralysed people
which require only a slight movement of a
finger or some other part of the body to
select a word or letter.

A micro can show objects in 3-D and
rotate them so the designer cart look at

them from another angle. An architect
designing a bridge or a building can
ask the micro to calculate stresses and
decide if it would be safe.

Portable micros

People doing field work, like a geologist
prospecting for oil, or a building site
foreman, might use a portable micro. It
can store and process facts on the spot.

Barley malt

Micros are used in automated breweries
and other factories. Making beer involves
mixing and fermenting at precise
temperatures for set times. Sensors tell the
micros when one stage is complete and
another ready to begin.

Micros are used to teach anything from
French to navigation. You can even
“dissect” a rabbit on the screen using a
light pen instead of having to cut up a
real animal.

track of accounts and invoices. A
freelance architect or designer could
also use the graphics on a micro.

A small space like the front of a car
needs to be designed so that the driver
can reach all the controls and has

enough room. A designer can buy a
special program which draws people
on the screen. They can be moved

about to see if they fit into the design.

Microcomputer wordprocessors are
used in offices to cut down on typing
and paperwork. Standard letters and

documents are typed and corrected on
a wordprocessor and then stored on
disk to be printed out when needed.

Adding to your micro

38

Once you are familiar with your micro
and what it can do, there are lots of
things you can buy to add to it. Extra
equipment such as disk drives,
printers, and graphics pads are called
peripherals. To connect something to
the micro you need an interface to
convert the signals between the two,
and different pieces of equipment
need different interfaces. A micro
usually has interfaces for a cassette
recorder and TV built into it. Many

Extra memory

also have interfaces for a printer, disk
drive or light pen. If not, you can buy a
separate one. Many peripherals,
especially printers, plotters and
modems (for telephone linkage to
other computers) use a standard
interface called an RS232. If you want
to add several peripherals to the
micro, you can buy a "motherboard”
into which you can slot boards or cards
containing interfaces for different
equipment.

Diskdrives Add-on

Some
RAMscan

increased
up to 64K, which

means that you can put in
2,500 program instructions.

You may want to increase your micro’s
RAM size before you buy any peripherals.
You can then use longer programs for
more exciting games and better graphics.
You can buy add-on RAM packs for some
micros. These are cartridges containing
RAM chips which slot into the micro to
connect with the PCB. Other micros have
space on the PCB for extra RAM chips to

be fitted by a dealer.

Joysticks and paddles

If you want to store long programs, or lots
of information in a home database, you will
find a disk drive much quicker than a
cassette recorder. They are far more
expensive, though. Disk drives for home
micros usually use minifloppy disks which
measure about 13.5cm across. The
Sinclair microdrive uses even smaller
disks, called microfloppies. They store
100K each, which is about enough space
for all the words in this book.

control and are more fun to use. With a
Joysticks and paddles are useful for joystick you can move the object in any

playing arcade-type games where you direction, but paddles only move it upT——
want to move things like aircraft and down, left and right. Usually joysticks have
spaceships around the screen. You can . a “fire” button on them to fire missiles,
use keys on the keyboard for this, but Many home micros have built-in
joysticks and paddles give you more interfaces for joysticks.

Graphics

If you are interested in graphics, you can
produce exciting pictures on the screen
by drawing on a graphics pad. You can
also get good quality “hard copy” pictures
using a plotter. A pen is supported over a

sheet of paper and the movement of the
pen is controlled by the computer’s

program. These are expensive pieces of
equipment, though, so you could buy a
light pen instead which is much cheaper.

Some plotters can
use several different
coloured pens to draw pictures.

Light pen

Graphics pad

You can buy a high-resolution graphics card

or cartridge for some micros to improve
the picture quality. As well as providing
more colours, it makes the groups of
pixels you can control smaller, so details

can be finer. It might make characters
smaller, too, so you can fit more lines of
text on the screen. High-resolution
graphics use up a lot of memory, so you
may need more RAM as well.

More about printers

There are three main types of printer -
thermal, dot matrix and daisy-wheel.
Thermal printers are the cheapest, and
though the print can be rather messy they
are adequate for printing out programs.

Dot matrix printers are also quite cheap.
Daisy-wheel printers are expensive, but
give very good quality print. Bi-directional
printers print one line going forward and
another going back to save time.

Thermal print head

• ft
Lv^vwvwvl

Thermal printers send out
little sparks on to heat-
sensitive paper, which turns
black where a spark hits it.
Patterns of black dots form
letters.

Dot matrix printers have a
print head consisting of lots
of pins. Letters are formed
by combinations of pins
shooting out and making
dots on the paper.

The print head on a daisy-
wheel printer looks like a
bicycle wheel without a rim.
On the end of each “spoke”
is a character shape.

Buyer's guide
On the next few pages there are descriptions of some of the main home
computers currently available. They are arranged roughly in order of price with
the least expensive models first

If you are new to computers, the jargon used to describe them is very
confusing at first. If you are buying your first computer, though, there are only a
few main features you need be concerned with and these are outlined in the
descriptions on the next few pages. At the bottom of this page there are some
explanations to help you understand some of the terms used.

The best way to find out about the different computers is to ask friends who
own computers about their machines or go along to a computer user’s group and
talk to the people there. You can also read the reviews in computer magazines
and ask lots of questions in computer shops. (Ask the assistant to explain any
terms you do not understand.) Before you buy your computer, think carefully
about what you want to use it for and decide how much you want to spend. Ifyou
decide to buy a simple, inexpensive machine, check how much extra memory
you can add and whether you can also use it with other equipment such as a disk
drive or printer, etc. Ifyou become a keen computer hobbyist, you will soon find
you outgrow the simplest version of the computer and will want to add to it.

Processor This is the microprocessor, the
CPU of the micro. The specifications for a
micro usually tell you which processor the
micro uses. The two main processors are
the 6502 and the Z80 (see page 28). If you
are buying your first micro you need not
really worry about this.

Keyboard Most micros have a keyboard
like an electric typewriter. A few, though,
have touch sensitive keys which do not
move when you press them. Typing in
programs on a touch sensitive keyboard
takes a bit longer than on one with keys

which move.
Most micros have the same

arrangement of letters as on a typewriter.
This is called a QWERTY keyboard.
(QWERTY is the sequence of letters in the
first row of letters on a typewriter.) Sinclair
computers (see opposite) have a special
system where each key carries a
programming word as well as a letter.
This means you do not have to type in the
programming words letter by letter.

Screen display The number of characters

(i.e. letters and symbols) that the micro
40 can display on the screen is measured in

columns for the number of characters
across the screen and lines for the number
of lines of text which will fit down the
screen. Some micros have automatic
scrolling - when the screen is full the text
automatically moves up the screen to
make space at the bottom.

Graphics Picture quality is measured by
the number of points you can plot across
and down the screen. This is called screen

resolution.

Interfaces Most micros have built-in
interfaces for a TV and/or monitor and for
a cassette recorder. They may also have
interfaces for some of the following:
printer, disk drive, joysticks, Prestel and
for networking (linking up with other
computers). If a micro does not have the
interface you want you can usually buy

one separately.

Software This is all the programs for a
micro on cassette, disk or in printed form.
The software for one micro does not wprk
on another micro unless they are related
machines like the Sinclair ZX81 and

Spectrum.

ZX81 (Sinclair)

Z80A processor
IK RAM expandable to 16K
32 column X 24 line screen display
63 X 43 screen resolution

The ZX81 is a small, inexpensive
microcomputer. It has a touch sensitive
keyboard with the Sinclair keyword

system - each key carries a programming
word so you do not have to type in the
words letter by letter. It uses a TV set for
display and an ordinary cassette recorder
for saving and loading programs. It can
make only a black and white display. It
also has a built-in interface for the Sinclair
printer.

The ZX81 is the world’s biggest selling
microcomputer and there is probably
more software for it than for any other
computer. Most of the programs are
games programs on cassette or printed in
books and magazines.

ZX Spectrum (Sinclair)

Z80A processor
16K RAM expandable to 48K
32 coliy^n x 24 line screen display
256 X £32 screen resolution

>>

The ZX Spectrum is less than twice the
price of the ZX81, but it has a much larger
memory. It has the same keyword system
for entering programming words as the
ZX81, but its keys move when you press
them. It can also make colour pictures and
sounds.

It uses a colour TV set for display and an
ordinary cassette recorder for saving and
loading programs. It also has interfaces
for the Sinclair printer and for a

microdrive. This is a small disk drive for

saving and loading programs on
microfloppy disks. You can also add an
RS232 and a networking interface to this
micro.

It can make pictures with eight colours
and sounds of over ten octaves. It has an
internal loudspeaker but only one sound
channel so you can only play one note at a
time.

Most software produced for the ZX81
works on the Spectrum, but there are also
lots of programs written specially for it. 41

PC1500 (Sharp)

This pocket sized microcomputer can be
powered by batteries or the mains so you
really can take it anywhere. It has its own
built-in black and white liquid crystal
display screen. To load and save
programs on cassette you can use an
ordinary cassette recorder, but you need
a special interface unit which the
computer fits into. This interface also
works with the Sharp printer which can
print in four colours. The small screen
makes it not really suitable for games.

CMOS processor
3.5K RAM expandable to 7K
26 character display in one line
7 X 156 screen resolution
dimensions 20.5cm x 9cm

VIC 20 (Commodore)

6502 processor
5K RAM expandable to 29K
22 column X 23 line screen display
176 X 158 screen resolution

This is a small, sturdy home computer with
colour graphics and sound. It uses a
colour TV set for display, but needs a
special VIC cassette recorder for storing
and loading programs. There are lots of
programs available on cassette and
cartridge, and printed in magazines.

On the standard machine you can
produce graphics in 16 colours using the
symbols on the graphics keys. To produce

graphics with DRAW and other BASIC
graphics commands you need a special
graphics program cartridge. For sounds
the VIC uses the TV loudspeaker and can
make four different sounds at the same

time.
It also contains built-in interfaces for the

following equipment: a disk drive, printer,
joysticks, light pen and there is also an
RS232 interface cartridge.

Electron (Acorn)

6502 processor
32KRAM
This is a new computer and some of the
technical specifications were not released
when this book was published.

The Electron is a small colour computer
made by Acorn, the company who
produce the BBC micro. It has a QWERTY
keyboard with moving keys and uses the
same version of BASIC as the BBC micro,
so most BBC programs also work on the
Electron.

TI-99/4 (Texas Instruments)

The TI-99/4 uses a TV set for display and
can make pictures in 16 colours. It also has
good music and sound effects, using its
own internal loudspeaker. It can play
three notes at once, over five octaves.
You can also buy a separate speech
synthesizer which can pronounce over 200
words.

The TI-99/4 uses an ordinary cassette
recorder for saving and loading programs
and there is lots of software on cassette,
cartridge and disk. Other extra equipment
for this micro includes a printer, disk

drive, joysticks and an RS232 interface.

16K RAM expandable to 48K
29 column X 24 line screen display
256 X 192 screen resolution

Dragon (Dragon Data)

This is a small micro designed for home
use. It has a keyboard with moving keys
and uses a TV set for display and an
ordinary cassette recorder. It has good
colour graphics using nine colours, and
can make a wide range of sounds using
one sound channel and the TV
loudspeaker. Additional equipment for
the Dragon includes a printer, disk drive,
joysticks, and RS232 and Prestel
interfaces.

6809 processor
32K RAM expandable to 64K
32 column X 16 line screen display
256 X 192 screen resolution

Atari 400 (Atari)

6502 processor
16K RAM not expandable
40 column X 24 line screen display
320 X 192 screen resolution

The Atari 400 has a flat, touch-sensitive
QWERTY keyboard. It uses a TV set for
display, but needs its own cassette

recorder for loading and saving programs
from cassette. Much of the software for
this machine, though, is in cartridges
which slot straight into the micro. There is

a wide range of good games programs for
the Atari 400 and you can buy joysticks as
an optional extra. Other additional

equipment includes a disk drive and
printer and the micro has 16 colours for
graphics and four sound channels.

43

TRS-80 Colour Computer (Tandy, or Radio Shack in the U.S.A.)

The TRS-80 Colour Computer uses a

colour TV set for display and an ordinary
cassette recorder for saving and loading
programs. It has eight colours and can
also make sounds. Additional equipment
for the Colour Computer includes
joysticks, a printer, a disk drive and an
RS232 interface.

6809E processor
16K expandable to 32K
32 column X 16 line screen display
256 X 192 screen resolution

Atom (Acorn)

The Atom is a small hobby or home

business computer. It uses a TV set for
black and white display, but you can buy
an extra PCB to make colour graphics. It
uses an ordinary cassette recorder.
Additional equipment for the Atom
includes a disk drive, printer, joysticks
and a network and Prestel interface.
There is a good supply of varied software
on cassette, disk and printed in books and
magazines.

6502 processor
2K RAM expandable to 12K
32 column X 16 line screen display
256 X 192 screen resolution

BBC Micro (Acorn)

The BBC micro comes in two versions, the
Model A which is the basic version and
Model B, a more advanced system. The
Model A can be upgraded to Model B
level and the complete system with all the
available peripherals makes a powerful
small computer.

It uses an ordinary TV set and cassette

6502 processor
16K RAM expandable to 32K

40 column X 32 line screen display
320 X 256 screen resolution (Model A)

recorder and has eight colours and three
sound channels. Additional equipment
available for the BBC micro includes a disk
drive interface, network interface, speech
synthesizer, program cartridge interface,
paddles, printer and Prestel interface.
There is extensive software of all kinds.

PET (Commodore)

6502 processor
16K RAM expandable to 96K
40 column X 25 line screen display
512 X 512 screen resolution

The PET was one of the first “personal
computers”, that is, a computer designed
to be used by one person. It has a built in
monochrome screen and needs a
Commodore cassette recorder which may
also be built into the micro.

The PET is used mainly by serious
computer hobbyists and by businesses

and schools. Additional equipment for the
PET includes a disk drive and printer and
it has a built-in PET IEEE-488 interface
(this is an alternative to the RS232

interface). There is an extensive range of
educational, business and games software
on cassette or disk.

The Apple, like the PET, is used by serious enable you to use other programming
computer hobbyists, small businesses and languages.
schools. Other additional equipment includes a

The basic machine has a motherboard printer, graphics tablet, disk drive and
with a number of slots into which you can Prestel interface. There is a lot of
fit PCBs for various different functions, e.g. educational, business and games software
for memory expansion and PCBs which for the Apple, in printed form and on disk. 45

46

Here are some additional computers
arranged in order of price starting
with the least expensive.

Jupiter Ace (Jupiter Cantab)

Z80A processor
3KRAM
32 column x 24 line screen display

This small, inexpensive microcomputer
uses the programming language FORTH
instead of BASIC. It has a calculator type
keyboard, good graphics and sound, but
no colour. It is the first home computer to
use FORTH so there is very little software
and most of the books on how to program
in FORTH are quite complex. It has a
printer interface and a microfloppy disk
drive.

Oric 1 (Oric Products
International)

Colour Genie (EACA)

Z80 processor
16K RAM expandable to 32K
40 column x 24 line screen display
196 x 96 screen resolution

The Colour Genie has many similarities to
the Tandy computers. It can run Tandy
software listings with minor alterations,
but not the cassettes. It has a typewriter
type keyboard and printer, disk drive,
light pen, joystick and RS232 interfaces.

Lynx(Camputers)

Z80A processor
48K RAM expandable to 192K
40 column x 24 line screen display
248 x 256 screen resolution

This micro has a typewriter type
keyboard and eight colour graphics and
sound. It is an expandable system with a

disk drive, printer and other add-ons.

6502A processor
16KRAM
40 column x 28 line screen display
240 x 200 screen resolution

Inexpensive microcomputer with a
calculator type keyboard, sixteen colours
and four sound channels. It has a
Centronics printer interface. A more
expensive version of the same computer

is available with 48K RAM.

Newbrain (Grundy)

Z80A processor
32K RAM expandable to 2Mbytes
40 or 80 column x 25 line screen display
640 x 250 screen resolution

There are two versions of the Newbrain.
The more expensive version has a single
line fluorescent display built into the
keyboard, but it can be used with a TV or
monitor, too.

One of the main features of this
computer is the extent to which the
memory can be expanded by adding
plug-in memory modules. It has no colour
or sound facility, but the black and white
graphics are very clear. It is designed for
expansion and has a number of sockets for
attaching a printer, modem and expansion
board and networking interface. There is
a variety of mainly business orientated
software available in ROM cartridges.

Commodore 64 (Commodore)

6502 processor
64KRAM
40 column x 25 line screen display
320 x 200 screen resolution

The Commodore 64 has the same
keyboard layout as the VIC 20, but a much
larger memory and a standard size screen
display. It has good graphics with sixteen
colours and three sound channels. The 64
can use most of the PET and VIC software
and also has a good range of business and
games cartridges of its own. There is a
disk drive and modem interface and a
plug-in cartridge which makes it
compatible with PET peripherals.

HX-20 (Epson)

6301 processor
16K RAM expandable to 32K
20 column x 4 line screen display
120 x 32 screen resolution

This micro has a small, neat keyboard with
a built-in screen, printer and micro¬
cassette recorder. It can also be
connected to a TV or monitor and can
work off batteries or the mains. Additional
equipment for the HX-20 includes ROM
cartridges, a barcode reader, acoustic
coupler for linking to another computer
via the telephone, and an RS232 interface.

Micro words
Animations Moving pictures on the

screen.
Arithmetic and logic unit (ALU) The

circuits in the central processing unit
where calculations and comparisons are

carried out.
ASCII American Standard Code for

Information Interchange. A standard way
of representing letters and numbers with
eight-bit binary numbers.
Backing store Programs or data saved

outside the computer on tape or disk.
BASIC A general-purpose

programming language suitable for most
kinds of programs. The letters stand for
Beginners’ All Purpose Symbolic
Instruction Code. Most micros use BASIC.
Baud rate A measurement of the speed
at which one bit travels from one part of
the computer to another, or between a
computer and a peripheral, for instance a
cassette recorder. One baud is one bit per
second.
Binary A counting system using only

two digits (0 and 1). Machine code is a
binary code.
Bit One of the two digits (1 and 0) that
make up binary code. In a computer, a bit
is a pulse signed (1) or a no-pulse signal (0).

Bug A mistake in a program.
Bus Tracks along which data is moved

about the computer.
Byte Most micros work with groups of

eight bits at a time, called a byte.
Central processing unit (CPU) The
circuits which control all the other parts of
the computer and where calculations are
carried out.
Character A number, letter or symbol.
Chip A tiny slice of silicon with lots of
electronic circuits etched into it. They are

kept in protective cases. Chips are used in
computers to do all the work.
Compatibility Computers are said to
be compatible if they can understand the
same programs.
Data Any information you give the

computer which will be worked on
according to the instructions in a program.
The information and results from a
computer are also called data.

Database An organised file of
information held in the computer’s
memory or on tape or disk.
De-bugging Finding mistakes in a
program and correcting them.
Dialect There are several versions of

BASIC, called dialects, which use slightly
different commands.
Error message A message the
computer flashes up on the screen to tell
you that there is a bug in the program, and
sometimes what kind of bug it is and
where it is.
Fortran A high-level programming
language used mainly by scientists and
mathematicians.
Gate An arrangement of transistors
which works on the pulses travelling
through the circuits of a computer. All the
computer’s processing is done using

gates.
Graphics Pictures made with a
computer.
Hardcopy Programs or data printed out
by the computer using a printer.
Hardware A computer, or a piece of
related equipment, such as a disk drive or
printer.
Hex A counting system based on 16
digits (0 to 9 and A to F). It is useful for
low-level programming as an eight-bit
byte can be expressed as two hex digits.

Input Any information or instructions
you feed into the computer.
Integrated circuit (IC) Minute
electrical circuits containing thousands of
electronic components on a tiny chip of
silicon.
Interface Special circuits which
convert the signals from a computer into a
form other electronic equipment can deal

with, and vice versa. Different pieces of
equipment need different interfaces.
Interpreter A special part of the
computer’s permanent memory (ROM)
where instructions in a programming
language (usually BASIC in a micro) are
converted into machine code.

Kilobyte (K) One kilobyte is 1024 bytes.
Listing A program written, typed or

printed out on paper.

Load Put a program into a computer’s

memory from cassette tape or disk.
Machine code The pattern of electronic

pulse signals which the computer uses to

do all its work.
Microprocessor A chip containing all

the different kinds of circuitry a computer
needs to control an electronic device. The
CPU of a microcomputer is a
microprocessor chip.

Mnemonics A code consisting of
abbreviated instructions. Mnemonics are
used as an aid to low-level programming.
Modem Short for
modulator/demodulator. A device which
converts the signals from a computer into
a form which can travel down telephone

lines.
Monitor Part of the ROM which holds

instructions telling the CPU how to
operate.
Motherboard A circuit board into

which you can slot other PCBs.
Network A system of computers,
sometimes with other computer
peripherals, linked together to share
information.
Output Any information the computer

gives you.
Pascal A high-level programming

language for general use.
PCB See Printed circuit board.
Peripherals Equipment that you can

attach to a computer, such as extra
screens, printers or plotters.
Pixels Tiny areas on the screen which

the computer can switch off or on to make
the shapes for letters or pictures.
Port A socket on a micro where you

plug in a lead connecting it to another
piece of equipment.
Printed circuit board (PCB) The board
inside a computer which holds all the
chips and other components. It has metal
tracks on it to carry the electrical signals

between the components.
Program A numbered list of instructions
to make the computer do a particular job.
Programming language A language in
which a program of instructions for a
computer must be written. There are lots

of different languages. High-level

languages consist of words and symbols
and are easier to use than low-level
languages which resemble machine code

more closely.
Random access memory (RAM) Chips
where any information you give the
computer is stored. You can retrieve or
change this information. The RAM chips
empty of stored information every tfrne

the computer is switched off.
Read only memory (ROM) All

computers have ROM chips which store

instructions telling them how to work. The
instructions are built into the ROM chips
when they are made, and the information

in ROM is permanent.
Save Store a program outside the

computer, usually on tape or disk.
Screen resolution The number of pixel
groups on the screen which the computer
can control. High resolution graphics are

detailed pictures made by a computer
which can control lots of small groups of
pixels. Low resolution graphics are
pictures made with fewer, larger groups

of pixels.
Sensor A device outside a computer that
measures light, pressure or temperature
and sends information back to the

computer.
Software Computer programs.
Syntax error A bug in a program due to
a mistake in the programming language.
Synthesizer A piece of equipment or

circuitry which produces musical notes or
sounds through a loudspeaker.
System variables An area of RAM
which stores information about different

parts of the computer, for instance, where
the next character will be printed on the

screen, and the addresses of the
boundaries between different areas of
RAM. These can shift depending on how
much is stored in each area.
Transistor An electronic component
which stops or sends on the pulses in the

circuits of a computer, depending on the
pulses it receives. A single chip contains
thousands of transistors.
Visual display unit (VDU) A screen,
similar to a TV screen, designed specially
for a computer.

INTRODUCTION TO

COMPUTER
PROGRAMMING

Brian Reffin Smith
Edited by Lisa Watts

Designed by Kim Blundell

Illustrated by Graham Round
and Martin Newton

> &

ri i |7

49

Contents

52 How a computer works
54 Giving the computer instructions

56 Writing programs
58 First words in BASIC

60 Giving the computer information
62 Using INPUT

64 Doing things with PRINT
66 How computers compare things

68 Programs with lots of BASIC
70 Drawing pictures

72 Playing games
74 Making loops

76 Tricks with loops
78 Subroutines

80 Doing things with words
82 Graphs and symbols

84 More graphics
86 Funny poems program

90 Programming tips
92 Puzzle answers

94 Loading and saving programs
95 Code charts

96 Conversion chart

50

This section is a guide to writing
computer programs in BASIC for
absolute beginners. BASIC is the
language used on most home
computers. It is a way of writing
instructions for a computer in a
form the computer can understand.

You do not need a computer to
use this guide, though of course it
helps you to understand the
programs if you can try them out on
a computer. Different makes of
computer use slightly different
versions of BASIC. Nearly all the
terms in this book, though, will
work on most microcomputers, and
the few that are not standard are
clearly marked.

At the beginning there are some
guidelines to programming a
computer. Then, as you read
through the book, the main BASIC
words are introduced one by one,
with short programs to show how
they work.

To give you some practice in
writing programs there are
program puzzles to solve and
suggestions for programs to write
and for useful alterations you can
make to the programs in this guide.
The answers to the program
puzzles are on pages 92-93.

At the end of this section there
are some guidelines to help you
write programs, and a list of "bugs”
- the mistakes in programs which
stop them working - with hints to
help you recognize them. At the
end of the book there is a summary
of BASIC with a short explanation
for each of the terms.

r

If you have a micro, try out the
programs in this guide, then, to find
out more about how your micro
works, look up the BASIC terms in
your manual. You may find that
some of the rules given here are
not necessary on your micro. The
best way to learn BASIC is to try out
lots of programs from books and
magazines, then alter them a little
to see what happens. From there
you will soon be writing your own
programs.

How a computer works
You can do all kinds of different things with a
computer. You can draw pictures, write funny poetry,
draw graphs, play games and do lots of things with
words and numbers, some of them useful and some
just for fun. A computer is sometimes described as
an “information processor”. Its task is to
take the information you give it, work
on it according to your instructions,
and show you the results.

LOAD

Microcomputers

Most micros consist of a
keyboard which you plug into
a TV set. You give the micro
instructions and information by
typing on the keyboard and
everything you type, along with the
computer’s results, is displayed on the
TV screen. The keyboard of a micro looks

Some micros have a small, built-in like a typewriter keyboard with some
display screen, like a pocket calculator. A extra keys. On some micros each key
few use a special screen called a monitor, gives the computer a separate instruction
A monitor is like a TV but it cannot pick up in BASIC so you do not have to type the
the signals from TV stations. words in letter by letter.

work on is called data. The program has to
be written in a language, such as BASIC,
that the computer can understand, and it
must follow all the rules of the language

To make a computer do what you want
you have to give it very precise
instructions. A list of instructions for a
computer is called a program* and the
information you give the computer to

‘Spelt like this when used for a computer.

Inside a micro

A micro is made up of two main parts:
the central processing unit (CPU)
where all the work is done, and the
memory where programs and data are
stored.

In fact, the computer has two

memories. One, called ROM, contains a
program which controls all the
operations of the computer. The other,
called RAM, is an empty memory
where your programs and data are
stored. When you switch off the micro
all the information in RAM is lost, but

the ROM program is permanent.

Another way to store information from a
micro is with a cassette recorder. You can
store programs and data on a cassette,
then load them back into the micro when
you want to use them.

A TV screen is the most usual way to
display the information from a micro. You
can also print it out on paper, using a
printer. This is useful as the information in
the micro and on the TV screen is lost
when you switch them off.

I
53

Giving a com

To make the computer do something, you

have to type in an instruction it
understands. This instruction can be a

direct command which it carries out

straight away, or it can be a program of
instructions which it stores in its memory
and does not carry out until you give it the

go-ahead.

The instructions in a program have to be
very carefully worked out. The computer
will attempt to carry out your instructions
precisely, even if they are wrong.

The computer cannot understand
instructions written in our language, so
you have to write them in one of the many
computer languages. Some of these
languages are described opposite.

All the work inside the computer is done
with a code of tiny pulses of electricity.
Your instructions are translated into

computer code by a special program
inside the computer called the
interpreter.

Each piece of information in computer
code is represented by patterns of pulses.
Computer code can be written down

using 1 to represent a pulse and 0 to show
there is no pulse.

Computer languages

You could write programs in computer code but it would be very difficult. Instead, there
are special computer languages, called high level languages, which the computer can

translate into its own code.
There are hundreds of different high level languages, many of them specially

designed to do one particular kind of work. BASIC is one of the most common
languages. The letters stand for Beginner’s All-purpose Symbolic Instruction Code. It is
not just used by beginners though. Below there are examples of three different

languages.

This is a short program in
BASIC. Line 10 tells the
computer to print “What is
your name” on the screen.
Then the computer stores
your answer in its memory
and if your name is Brian or
George, it prints out a
message to you.

This program is written in

Pascal, a language named
after a famous French
mathematician. It is part of a
program to work out details
about money. Many people
think it is easier to write
good, neat programs in
Pascal than in BASIC.

This is a language called
PILOT. It is used to write
programs to help people
learn new subjects. In this
language, the computer can
recognize answers even if
they are not exactly right.

At first glance, computer languages seem instance, in mathematics a special

very strange and difficult, but then, so do
other languages such as the Finnish
shown on the right, until you get to know
them. There are lots of other subjects too,
in which special languages are used. For

* Minus fifteen I guess.

notation is used to write down ideas and
formulae which would need a lot of
ordinary words to explain them and other
kinds of notation are used to write down

chess moves or music.

Writing programs
A program is like the rules for a game, or the recipe for a cake. If there is a
mistake in the rules, or the recipe, you will not be able to play the game
properly, or bake a good cake. In the same way, the results you get from a
computer depend on the instructions you give it. To write a program for a
computer you first need to study what you want to do very carefully and
work out the main steps needed to achieve the result you want.

Imagine trying to write a program to tell a
robot to post a letter. A simple instruction
as shown above would be too difficult for
the robot's computer brain to understand.

robot needs to do to post the letter. Its
computer needs instructions telling it
what to do at every stage.

ro"<rdoor
%n6P°*'b°%

program you need to break
down the instructions for each stage into
even smaller steps which can be
translated into a language the robot can
understand.

The robot will attempt’to follow your
instructions even if they are wrong, or
incomplete. Mistakes in a program are
called bugs and they can sometimes lead
to unusual results from the computer.

Program diagrams

When you are writing a program it sometimes helps to draw a diagram like the one
below, showing the main steps you need to solve the problem. A diagram like this is
called a flowchart. It shows each of the steps the computer needs to carry out, and the
order they should come in.

This is a flowchart
for a program
telling the computer
to print a message
only to robots.

A flowchart has different shaped boxes
for different steps in the program. The
beginning and end of the program have
round boxes, instructions telling the
computer to do something are in

rectangular boxes and decision boxes,
where the computer can do different
things depending on the information it

receives, are in diamond-shaped boxes.
The lines show the possible routes the
computer can follow.

After working out all the details of the
program you can translate it into BASIC
and test it on the computer. The program
will probably not work straight away

though, as there will probably be some
bugs in it. These may be typing mistakes
made when you typed the program into

the computer, or errors of logic in your
program. Before you can get the program

to work you have to find all the bugs and
correct them. * Sometimes, a bug makes a

program produce a slightly different
result which you may prefer. Useful bugs
like this are called “pugs”.

*There are some tips to help you find bugs on pages 90-91.

First words in BASIC
Lots of the words in BASIC are
based on English words and it is
quite easy to guess what they
mean. For instance, PRINT means
"display on the screen”, RUN
means "carry out this program” and
INPUT means "give the computer
information”. On these two pages
you can find out how to use the
word PRINT.

Most home computers have a
BASIC language interpreter inside
them already and when you switch
them on they are ready to be
programmed in BASIC. *

READY

PRINT "SNAILS">

To tell the computer to display words on
the screen you use PRINT with the words
you want in quotation marks. For instance,
PRINT “SNAILS” tells it to display the word
SNAILS on the screen.

' PRINT "SNAILS"

SNAILS

PRINT "XYZ"

XYZ

PRINT "1-2-3"

1-2-3

PRINT "RUBBISH'

RUBBISH

The computer will display on the screen
whatever you type between the quotation
marks. It can be letters, numbers, words
or symbols. Note that it does not display
the quotation marks themselves.

When you switch on a micro some words

are usually displayed on the screen
automatically, along with a small symbol
called the cursor. The cursor shows
where the next letter you type will appear.

The computer will not carry out your
instruction, though, until you press
NEWLINE (or RETURN or ENTER - it
varies on different computers) to tell it the
instruction is complete.

PRINT "1-2-3"

1-2-3

PRINT "RUBBISH"

RUBBISH

PRINT 999

999

PRINT 123

123

To display numbers by themselves, you
do not need to use quotation marks. Now,
to clear the screen you type CLS on most
micros. (Check this in your manual if you
have a computer.)

*Some computers have to have a special program loaded from cassette tape before they
understand BASIC.

A program in BASIC

In a program, each line of instructions starts with a number. This tells the computer to
store the instructions in its memory and not to carry them out until you give the

go-ahead. On the opposite page, the instructions to the computer did not have numbers,
so the computer carried them out straight away. Here is a short program which makes
the computer display symbols in the shape of a face on the screen.

Line numbers usually go up in
tens so you can add extra
instructions without
renumbering the whole
program.

When you type in a program you have to you tell it to by typing RUN. Be careful not

press NEWLINE (or the computer’s word) to mix up the letter O and the figure 0 as

10 PRINT “//////”

20 PRINT “I I”

30 PRINT “I(..)I”

40 PRINT “I -L I”

50 PRINT “VVW”

60 END

at the end of each line. The lines are this will cause a bug. Most computers
displayed on the screen but the computer have a RUBOUT or DELETE key for
does not carry out the instructions until correcting typing mistakes.

When you have typed in all the lines,
check them carefuly to make sure there
are no mistakes. Then, to tell the computer
to carry out the program, you type RUN,
followed by NEWLINE.

If the program does not work, or the
picture does not look right, you need to
display the program again to find the bug.
To do this you type LIST. The computer
may give you an error message telling you
what the bug is.

^Debugging programs

RUN
MISSING"
LIST
10 PRINT "//////"
20 PRINT "I I "
30 PRINT "I (. .) I "
40 PRINT "I -L I "
50 PRINT " VWV
60 END

RUN
MISSING"
LIST
io print "innr
20 PRINT "I I '
30 PRINT "I (. .) I'
40 PRINT "I -L I '
50 PRINT " VVW
60 END

^ 50 PRINT " VWV "

The computer will give you an error
message for most bugs. The error

the program altogether, just type the line

number, followed by NEWLINE. Each
messages are explained in the computer’s computer also has its own way for
manual. The easiest way to correct a
mistake is to type the whole line again.
The computer will replace the old line
with the new one. To get rid of a line from

correcting or altering parts of lines, using
words such as EDIT or COPY. This is
explained in the computer’s manual.

k Program puzzle - Try changing the program to give the face different features.

Giving the computer information
To make the computer do something more useful than just displaying
things on the screen you have to give it information or “data" to work on.
The computer stores this information in its memory until you tell it to use it.

When you put a piece of data into the
computer’s memory you have to give it a
label so you can find it again. You can use

letters of the alphabet as labels. To label a

memory space and put a number in it you

use the word LET, as shown above. A
labelled memory space is called a

variable because it can hold different data
at different times in the program.

10 LET A=3

20 LET A$=“SNAILS’

30 LET B=43

40 LET B$=“ROBOTS”

Don t forget
quotation marks

You use a different kind of label to store

letters and symbols in memory spaces.
Letters and symbols are called “strings”
and you use letters of the alphabet with

dollar signs to label them, e.g. C$. *

You put a string in a memory space
using LET in the same way as for a number

variable, but the letters and symbols must
be enclosed in quotation marks, as shown

above.

3
10 LET B=365
20 LET D$=“DAYS IN THE YEAR”
30 LET L$=“EXCEPT LEAP YEAR”
40 PRINT B
50 PRINT D$
60 PRINT L$
70 END ■*-Many computers do

not need an END.

RUN
365
DAYS IN THE YEAR
EXCEPT LEAP YEAR G

To display the information on the screen
you use the word PRINT with the name of
the variable, e.g. PRINT A$. This short

program prints out the information from
variables B, D$ and L$.

You can run the program as many times

as you want. Each time the computer will
print out the same information. The data in
the variables stays the same until you

change it.

"This is pronounced “C dollar” or “C string”.

Another way

10 READ A •*-—^ You must have the
) READ B correct kind of label

40 DATA 6,231, FRIDAY

Another way to store information is with
the words READ and DATA, as shown
above. The READ lines tell the computer
to label memory spaces and the DATA
line contains the information.

Some programs

„ Comma 10 READ Q
, 20 READ X$

30 DATA 24/CHEESE BURGERS
40 PRINT Q v-v-'
50 PRINT X$ This is one item
60 END of data, including
RUN the space.
24
CHEESE BURGERS

Here are two programs, one using READ
and DATA and the other using LET to
store information in the computer’s
memory.

When you run the program the
computer puts each piece of data in a

memory space, taking them in order. The
items of data must have commas in
between so the computer knows how long
each one is.*

- Quotes -

10 LET A$="ROBOTS ARE GREAT"
20 LET B$="IF YOU LIKE"
30 LET C$="GREAT METAL IDIOTS'
40 PRINT A$
50 PRINT B$
60 PRINT C$
70 END
RUN
ROBOTS ARE GREAT
IF YOU LIKE
GREAT METAL IDIOTS

Variables are labelled spaces in the
computer’s memory where information is
stored. A variable containing numbers is
called a number variable and one
which contains letters and symbols is

called a string variable. The contents of

variables can change during the program.
Some computers can use words as labels
for variables, but not words which contain
BASIC words as this would confuse the
computer.

*You cannot use this method on the ZX81 computer.

62

Using INPUT
Another way to give the computer data is with the word
INPUT. This lets you put in information while the program
is running, and you can use different data each time
you run the program.

20 INPUT A
30 INPUT A$ For numbers

\

You use INPUT with a label such as A for a
number and A$ for a string. When the
computer meets the word INPUT in a
program it puts the label on a memory
space and asks you for the data, usually by

J INPUT programs

Computer’s
10 INPUT G question
20 INPUT B$ marks
30 PRINT G
40 PRINT B$
50 END

Picture 2 shows what happens when you
run this program. When the computer
meets the word INPUT in line 10 it prints a
question mark on the screen and waits for
you to type in a number for G. Then it

printing a question mark, or other symbol,
on the screen. Then you type in the data
and the computer stores it in the memory
space and goes on with the rest of the
program.

prints another question mark for the
INPUT instruction in line 20. This time you
have to type in words or symbols as the
label B$ told the computer to expect a

string.

^ 10 PRINT “WHAT IS YOUR NAME^ Y2l run

20 INPUT N$]-v WHAT IS YOUR NAME

30 PRINT “HOW OLD ARE YOU” \ ?RUSTY ROBOT

40 INPUT A sJ 1 eiA, HOW OLD ARE YOU

50 PRINT N$ --- - n m 777
60 PRINT “IS” /You type your drtC RUSTY ROBOT
70 PRINT A (name here, then) t—i to is

^80 END | L ”_j
If you have a computer, try typing in this in the sample run above. Try it lots of times
program, then press RUN to start it off. with different data, pressing RUN to start
When the computer asks you for the program again each time. The
information, type in your name and age, or computer always prints exactly what you

a silly name and crazy number, as shown put in N$ and A.

Poetry writing program

Now you know enough BASIC to write a poem on a computer. Here is a poetry writing

program which uses PRINT and INPUT.

10 PRINT “WHAT IS YOUR NAME”
20 INPUT N$
30 PRINT “A POEM BY” This line prints
40 PRINT N$]- out your name.

50 PRINT “TYPE IN A WORD”
60 PRINT “THAT RHYMES WITH ME”
70 INPUT A$
80 PRINT “HERE IS THE POEM”
90 PRINT “COMPUTERS USED TO

FRIGHTEN ME”
100 PRINT “BUT NOW I’M HAPPY AS A’
110 PRINT AS]-1
120 END

THIN
WHAT IS YOUR NAME
?SAL
A POEM BY SAL ,
TYPE IN A WORD
THAT RHYMES WITH
?BEE
HERE IS THE POEM
COMPUTERS USED TO

FRIGHTEN ME
BUT NOW I'M HAPPY AS A

^BEE

The program makes the computer ask you
your name, then store your reply in N$ and
print it out at line 40. It stores the word you
choose in A$, then prints it out as part of

the poem at line 110. If you have a
computer try running the program lots of
times, inputting different words at line 70.

Program puzzle

Can you write a program to get the computer to ask you your name and then print hello,

followed by your name and a message to you?

Checklist for typing in programs

1. Before typing in a new program type NEW. This clears any old

programs and variables out of the computer’s memory.

2. When you are typing in the program, remember to press

NEWLINE, or your computer’s word, at the end of each line.

3. After typing in the program, check all the lines on the screen to
see if there are typing mistakes. Make sure none of the lines are
missing, too.

4. Next you can type CLS (or your computer’s word) to clear the
program off the screen. Then type RUN to start the program.

5. To get the program listing back again to check it or alter a line,
type LIST. To display one particular line you can usually type
LIST with the line number, but check this command as it

varies slightly on different computers.

6. To stop the program while it is running type BREAK or
ESCAPE. Check this command in your manual, though,

as it varies on different computers. On some computers

ESCAPE wipes the whole program out of the computer’s
memory. To start the program again type RUN.

Doing things with
PRINT

So far you have seen how to use PRINT to

display words and numbers on the
screen, and to print out the contents of
variables. Below you can find out how to
use commas and semi-colons to space
things out on the screen. You can also use

PRINT to do calculations on a computer.

You can find out how at the bottom of the
page. On the opposite page you can find
out more about doing things with
variables.

Commas and semi-colons

10 PRINT “I AM SPACED”,

20 PRINT “OUT” V Comma H
10 PRINT “I AM SQUASHED”;.
20 PRINT “UP”

10 PRINT “I AM REALLY’

20 PRINT

30 PRINT “SPACED OUT”

\

AM SPACED 0

I AM SQUASHEDUP

I AM REALLY ^ The word PRINT
^ by itself made

SPACED OUT thisemptyline.

These lines show how you can use
commas and semi-colons to tell the
computer where to print the next letter. A

comma tells it to move along the screen a
bit and a semi-colon tells it to stay where it

is. The picture above shows how the lines
would be printed on the screen. The word
PRINT on a line by itself tells the computer
to leave an empty line.

You use PRINT like this to tell the
computer to do sums. You use the normal
signs for addition and subtraction and *

for multiplication and/ for division.

The computer can also do more

complex mathematical calculations such
as sines, cosines, square roots, etc.

Printing variables by themselves is not
very useful. You usually need some words
with them to say what they are. To print
words and a variable together the words

must be in quotation marks as usual, and

the variable must have a semi-colon either
side of it, as shown above. If you want to
space out the information you can use
commas instead of semi-colons.

3 LET X=X+1

LET C$=C$+"MY"

gUfjj
During a program you can change the
contents of memory spaces like this. To
the computer these statements mean add

one to the figure in memory space X and
add “MY” to the letters in C$.

n ■
* Spaces

.A
PRINT "I ATE " ; X ; " PEANUT
BUTTER AND " ; C$; " SANDWICHES”

I ATE 7 PEANUT BUTTER AND
JAMMY SANDWICHES

L_I
Next time you ask the computer to print

the variables it will display the new words
and numbers stored in the memory

spaces.

10 LET A=9 N
20 LET B=7 Z'-

30 PRINT A*B
40 PRINT A/B
50 END v

ADi RUN
63

^ 1.28571

You can do sums with variables too, as

shown in the program above. The
computer finds the numbers in the
memory spaces, then works out the sums.

•K-
Program puzzles

1. Write a program to add numbers to
the variables in the program on the left
so that it would print out the answers
100 and 1 on one line with a space
between.

2. Change lines 30 and 40 so that they
print out the numbers, what you are
doing to them and the answer, e.g.
“7 times 9 is 63”.

3. Change your answer to the program
puzzle on page 63 so it prints your name
and the message on one line.

How computers compare things
One of the most useful things a computer can do is to comparey^^^V '
pieces of information and then do different things according f
to the results. To do this you use the words IF... THEN.

IF A=B THEN PRINT "THEY ARE EQUAL"

IF A>8 THEN PRINT "A IS BIGGER"

IF A<B THEN PRINT "A IS SMALLER"

IF AoB THEN PRINT "THEY ARE NOT
EQUAL"

The computer can do several different
tests on information to compare it. The

symbols for the tests are shown above. It
can test to see if two pieces of data are
equal, different, or if one is greater or less
than the other.

These lines show how you use the
symbols with IF and THEN to make the
computer compare two pieces of data.
You can compare any kind of data-
words, numbers and variables, i.e. the
contents of memory spaces, too.

Weather program

10 PRINT "WHAT'S THE WEATHER LIKE TODAY"

20 INPUT W$

30 IF W$="RAIN" THEN PRINT "UMBRELLA TIME"

40 IF W$="SUNNY" THEN PRINT "GOOD"

50 END __
flfyou inputthesewords}

i nothing will happer^^B

HOT

Here is a program using IF and THEN. At
line 20 the computer stores the word you
input in variable W$. Then, at lines 30 and
40 it checks to see if the word in W$ is the
same as “rain” or “sunny”. If it is, it prints

■ RUN
WHAT'S THE WEATHER
LIKE TODAY
?SUNNY
GOOD
RUN
WHAT'S THE WEATHER
LIKE TODAY

JJMBRELLA TIME ^

out one of the responses. If you put in a
different word at line 20 nothing will
happen. You could change the words in
lines 30 and 40, though, then try inputting
one of the new words.

rs Age program
10 PRINT "HOW OLD ARE YOU'
20 INPUT A
30 IF A>16 THEN PRINT "OLD"
40 IF A<16 THEN PRINT "YOUNG"
50 IF A=16 THEN PRINT "JUST RIGHT'
RUN
HOW OLD ARE YOU
?16

LiUST RIGHT

0 French lesson ^
10 PRINT "HOW DO YOU SAY RED IN

FRENCH-
20 INPUT A$'
30 IF A$= "ROUGE" THEN PRINT "CORRECT'
40 IF A$o"ROUGE" THEN PRINT "NO,

ROUGE"
RUN
HOW DO YOU SAY RED IN FRENCH
?BLEU
NO, ROUGE_^

In the age program, the computer right”. In the other program the computer
compares input A with the figure 16. If it is prints out one of two different responses
bigger than 16 it prints “old”. If it is smaller depending on whether A$ equals “rouge”
it prints “young” and if it is 16 it prints “just or not.

~^EProgx<
r^correi

_ ram puzzle - Can you write a program to get the computer to ask you sums, then either print
‘correct” or give you the right answer?

Branching programs

2 IF A=6 THEN LET A$=“SIX”

IF X=Y-2 THEN LET Z=0

IF S=T THEN STOP

IF R<10 THEN GOTO 30

■ cc
Thistellsthe
computertogo
to line30.

You can give the computer almost any
instruction after the word THEN, as shown
above. A useful instruction is to make it go
to another line. (On most computers, but

not the ZX81, you can leave out the word
GOTO.) You usually need a STOP
instruction in programs with GOTO, or the
computer will go on repeating the

program endlessly.

Maths program

10 PRINT “TYPE IN A NUMBER”

20 INPUT A

30 PRINT "TYPE IN ANOTHER NUMBER"

40 INPUT B

50 PRINT “DO YOU WANT TO”

60 PRINT “ADD, SUBTRACT, MULTIPLY”

65 PRINT “DIVIDE OR STOP”

70 INPUT C$

80 IF C$=“ADD” THEN PRINT A+B

90 IF C$=“SUBTRACT” THEN PRINT A-B

100 IF C$=“MULTIPLY” THEN PRINT A*B

110 IF C$=“DIVIDE” THEN PRINT A/B

120 IF C$=“STOF’ THEN STOP

130 GOTO 10

'THE PROGRAM WIU>-
RUN ' f ONLY STOP WHEN YOU
TYPE IN A NUMBER & INPUT THE WORD S'

TYPE IN ANOTHER NUMBER
?184
DO YOU WANT TO
ADD, SUBTRACT, MULTIPLY
DIVIDE OR STOP
?ADD

- Computer’s '

In this program the numbers you type in
are stored in A and B and your instructions
are stored in C$. At lines 80 to 120 the
computer compares C$ with five different
words, and when it finds the right word, it
carries out the instruction. It passes over
all the lines which are not true.

This program will go on repeating itself
until G= 14. When G= 14 the computer will

pass over lines 30 and 40 and print

“correct”. Can you alter the program so
that it gives you some clues, as shown in
the picture on the right?

67

Programs with lots of BASIC
The programs on these two pages use most of the BASIC
covered so far. The first program is a space game for two
people to play with the computer. If you do not have a computer,
study the programs and try and follow how they work.

Space commando

10 PRINT “ALIEN’S SQUARE ALONG”

20 INPUT A

30 PRINT “ALIEN’S SQUARE UP”

40 INPUT B

50 CLS]-

60 PRINT “COMMANDO’S SQUARE ALONG”

70 INPUT C

80 PRINT “COMMANDO’S SQUARE UP”

90 INPUT D

100 CLS

110 LET X=SQR((A-C) * (A-C)+(B-D) * (B-D))J-

120 PRINT “YOU ARE NOW”

130 PRINT X; “SPACE UNITS APART’

140 IF X<1.5 THEN PRINT “ALIEN FOUND’

150 IF X<1.5 THEN STOP

155 PRINT “WHAT ARE YOUR NEW POSITIONS”

160 GOTO 10

170 END

Lines 60 to 90 store
_ commando's co-ordinates

inCandD.

This line works out
how far apart they are

. and stores the answer
inX.

'b
If X is less than 1.5 the
program stops. If it is
more than 1.5 the
program repeats.

In this game, one person is a hostile alien
and the other is a space commando trying
to catch the alien. Each player draws a

secret map on which they plot their
positions (you can find out how to do this
below). They give the computer the grid

co-ordinates of their positionsand the
computer then works out how far apart

they are. The players use the computer’s
figures to help them work out their next
moves.

Howto play

For their secret map, each player
draws a grid of 20 x 20 squares and

numbers them as shown on the right.
The alien starts in the left side of the
grid and the commando starts in the

right. Each turn, they can move two
squares up, down, sideways or
diagonally and then give the computer

their new positions. When they are less
than 1.5 space units (i.e. squares) apart,
the commando has caught the alien.

ib
Commando

'SO THE REASON YOUTYPED^
I FELL DOWN A HOLE

WAS REALLY GIVEN BY
YOUR ANSWER

I DIDN'T WANT MY
FRIEND TO SEE I
HAD AN ICECREAM

HOW ODD! kRUN ME AGAIN FOR
FURTHER ENLIGHTENMENT J

How to make the computer look clever

In this program the computer appears to respond to your answers to its questions. You
can see how the program works in the pictures at the bottom of the page. The program
uses INPUT in a slightly different way which makes the program shorter an<
read.

The program
5 LET C=0
10 PRINT “I WOULD LIKE TO TALK TO YOU"]
20 INPUT ‘TELL ME ANYTHING SILLY THAT -

HAPPENED TO YOU THIS WEEK”;A$
30 READ B$]-—-

40 PRINT B$; -«—This makes the computer stay on the same line.
0 INPUT C$]- - Your reply is stored in C$.

60 LET C=C+1

70 IF C=6 THEN GOTO 100 J
80 GOTO 30]---
90 DATA WHY, WHY IS THAT

95 DATA WHY, CAN YOU EXPLAIN
98 DATA CAN YOU SAY WHY, WHAT WAS THE REASON
100 PRINT “SO THE REASON YOU TYPED”

PRINT “ ”;A$]---1
PRINT “WAS REALLY GIVEN BY YOUR ANSWER”

130 PRINT “ ”;C$

140 PRINT “HOW ODD!”
150 PRINT “RUN ME AGAIN FOR FURTHER

ENLIGHTENMENT"
160 END

This is the new input way. Your
reply is stored in A$.

At line 30 the computer looks
for the first line with DATA and
takes the first item and puts it in

Variable C in lines 60 and 70 is
a counter. It keeps count of the
number of times the program is
repeated. When C = 6 all the
data items have been used and
the computer moves on to line
100.

L Line 80 makes the computer go
back to line 30 and replace the
data in B$ with the next item in
the data list.

The spaces in lines 110 and 130 leave
spaces on the screen before your
replies. It does not matter how many
spaces you leave in the program.

How it works

Drawing pictures
A computer makes pictures by
lighting up little rectangles on the
screen. Each rectangle is called a
pixel and each pixel needs a
separate instruction from the
computer to switch it on. Most
computers can also make the
pixels different colours.

On these two pages you can find
out how to use BASIC to make
simple pictures on the screen. The
instructions given here are for
single colour pictures only.

L._J
You can usually see the pixels in a
computer picture. A computer with a

large memory, though, can make pictures
with thousands of very small pixels. These
pictures are called high resolution graphics.

J These are some of the
“ instructions for lighting up

pixels on different computers.

The instruction for lighting up a pixel
varies on different computers, but it is
usually something like PLOT (X, Y). X and
Y are the pixel’s co-ordinates and X is
the number of pixels along and Y is the

number of pixels up.

On a computer with high resolution
graphics you may be able to plot 1000
points along the screen and 1000 up. A
less powerful computer has about 60 x 40.
(If you have a computer, check the size of
your screen as you may get a bug if you
plot outside its range.)

Pictures made by a computer are usually
called graphics. Some computers need a
special command before you do graphics.
For instance, on the BBC micro you need

the word MODE with a number. *

You can also switch a pixel off with a
command such as UNPLOT (X, Y). In the
programs in this book we use PLOT and
UNPLOT. If you have a computer check

these commands in your manual.

•For the programs in this book use MODE 5 on the BBC micro with the plot command PLOT 69, X, Y.
For unplotting use PLOT 71, X, Y.

Plotting program /£[01 command)
-< varies on

\ different r? ^

1 10 PRINT “TYPE IN (computers. >| Cm RUN
TWO NUMBERS” S ^ TYPE IN TWO NUMBERS

20 INPUT X VAA ?24
30 INPUT Y JM| ?24 S'**"
40 PLOT (X,Y) BpBBip; TYPE IN TWO NUMBERS
50 GOTO 10 FX ?30

/you have to press <1 ”L|—r^T., ?15 ^ 2ndnixel
(NEWLINE or RETURN after V. m m IT]
V inputting each number j K ^

This short program asks you for two
numbers, then plots the pixel with those
numbers as co-ordinates. If you try this
program make sure the numbers you type
in are within the range of your computer.

Line 50 makes the program repeat itself

endlessly and the only way to stop it is
with BREAK (or the computer’s own
word). Can you insert a counter (see page
69) to make it run, say, six times.

'Adding 1 toX'>;
and not to Y

‘plotsa horizontal This plots

60 IF X< 14 THEN GOTO 30

Thisplots
Adding 1 to Y '
and not to X plots

va vertical line. J

a diagonal
line going up.

Plotting a picture

First you need to draw the
picture on squared paper
and work out the
co-ordinates of the
squares.

Then you can work out the program to plot all the
squares. By giving X and Y starting values, then adding
to them or subtracting from them, and repeating parts of
the program, you can make th^omputer plot
sequences of pixels as shown above.

After writing the program it is easy to
change the picture by altering the
numbers. You can move it to a different
place on the screen by changing the
starting values, or multiply all the numbers
by three to make an “exploded image”.

Another way

You can really only make very simple
pictures with PLOT. To make more
complicated ones you need special
equipment such as a graphics tablet. You
place a drawing on the tablet and trace
over it with a special device called a
“puck”. This automatically reads the co¬
ordinates into the computer.

Program puzzle - Can you write a program to plot your initial on the screen? There is a sample
program on page 92.

Playing games

When you throw a pair of dice you cannot
predict what the numbers will be. The
chances are equal that the numbers will
be anything from one to six. You can
produce unpredictable numbers on a
computer. They are called random
numbers.

The computer contains a special
program for producing random numbers.
Sometimes it repeats the same number
several times, but in sequences of lots of
random numbers, the number of times
each number is picked is about even.

To make the computer produce a random
number you use the word RND. Some
computers need a 1 or 0 in brackets after
the word. If you have a computer, check
your manual for the correct command.

The RND instruction always produces a
number below one. On some computers
you can put a number in brackets after
RND, e.g. RND(99). This makes it produce
a whole number between 1 and the
number in brackets.

INT (short for integer, meaning whole
number) followed by the RND instruction
(either RND(1) or RND(O) on different
computers). Then you multiply by the
highest number you want and add one so
the number is above one.

This instruction means pick a random
number and store it in variable R. In the
programs in this book we use
INT(RND(1) * 60 +1) to mean pick a
random number between 1 and 60. You
may need to convert this instruction for
some computers.

Space attack

This is a program for a game using
random numbers. In the game you are on
a star ship being attacked by a wave of
alien fighters. Your ship’s computer
locates the aliens and gives you their
coded positions. To hit each alien you
have to work out the firing range by
multiplying the codes and typing in the
answer.

10 LET C=0]-
20 LET A=INT(RND(1)*20+1)
30 LET B=INT(RND(1)*20+1)
40 PRINT “ALIEN SHIP’S CODES'
45 PRINT “ARE ”;A,B;“ FIRE’
50 INPUT X
60 LET C=C+1
70 IF X=A*B THEN PRINT “ALIEN SHIP"

DESTROYED”
80 IF X<>A*B THEN PRINT “MISSED”
90 IF C<6 THEN GOTO 20]-
100 END

■ C is a counter to count the number ol
''the program is repeated. Each time, line 60
adds 1 to C.

These two lines produce random numbers
for the alien ship’s codes and store them in
AandB.

Your number is stored in X.

In lines 70 and 80 the computer
checks to see if you got the
right aj

Running the program
The picture on the right shows what
happens when you run the program. If you
type in the correct answer for the two
numbers multiplied together the
computer will print “alien ship destroyed”.
If your answer does not equal A x B the
computer prints “missed”.

C Program puzzle
Can you add another counter to the program to count your number of hits and print
out your score at the end of the game? You need to set up a variable called S and give _

it a value of 0 to start with, then add 1 for each hit.

^ujn -^
ALIEN SHIP'S CODES
ARE 17 3 FIRE The comma in

?41 line 45 spaced
MISSED out the numbers
ALIEN SHIP'S CODES like this.
ARE 11 5 FIRE
?55
ALIEN SHIP DESTROYED
ALIEN SHIP'S CODES

^ARE 13 6 FIRE
_J

Random pattern program

5 CLS]-

10 LET X=INT(RND(1)*30+1)

20 LET Y=INT(RND(1)*30+1)

30 PLOT (X,Y)

40 GOTO 10 1-

1-

The random numbers must fit on the
computer’s screen.

This line makes the program repeat ,
■ endlessly. i

7Computers'
J commands

forCLS, RNDandJyj
PLOT may vary
and some will
need a graphics i

4[ne.

This program uses random numbers to
plot spots of light on the screen. Lines 10
and 20 produce random numbers
between 1 and 30 and store them in X
and Y. Line 30 then plots the pixel with
co-ordinates X, Y. As the screen fills up

you see less pixels appearing as many of
them are already plotted. To stop the
program you have to type BREAK or
ESCAPE, or another word on different
computers.

74

Making loops
You often need the computer to do the same thing several times in a
program. On page 69 you can see how to make it repeat part of a program
using GOTO and a variable which acts as a counter. Another way is to
repeat the same lines several times using the words FOR... TO and
NEXT. This is called making a loop.

J Hello loop

*10 FOR J=1 TO 6 \
(20 PRINT “HELLO”)Loop

oO NEXT J -r

40 END

This program has a loop from lines 10 to
30 which makes the computer repeat
line 20 six times. The letter J is a
variable and line 10 tells the computer
to set J at 1 on the first run through the
program, 2 the next time, then 3, etc., up
to 6. Line 20 tells it to print the word

hello and line 30 tells it to go back and
find the next value for J. WhenJ=6the
computer goes on to line 40.

2 PLUS 2 IS 5
2 PLUS 2 IS 5
2 PLUS 2 IS 5
2 PLUS 2 IS 5
2 PLUS 2 IS 5
2 PLUS 2 IS 5
2 PLUS 2 IS 5
2 PLUS 2 IS 5

ONLY JOKING!

In this program, the loop from lines 10 to
30 makes the computer repeat line 20
eight times. Each time it passes through
line 20 it prints out the same silly

^ Eighttimestableprogram

10 PRINT “THE EIGHT TIMES TABLE’
<r 20 FOR J=1 TO 12.
(30 PRINT J*8)Loop
V 40 NEXT J --

50 END

This time J is used to count the number
of loops and also as part of the sum J*8.
Line 20 tells the computer to set J at 1,
then 2,3, etc, up to 12. Line 30 takes the
current value of J, multiplies it by 8 and
prints out the answer. Then line 40
sends the computer back to line 20 to
find the next value of J.

sum. After doing it eight times the
computer carries on with the rest of the
program. Line 40 just makes it leave an
empty line.

Making patterns

FOR ... NEXT loops are useful for making
patterns, like this, of a simple shape
repeated lots of times. The program for
this pattern is too long to write out here in
full, but it would look something like this:

10 FOR 1=1 TO 45
20 Draw a rectangle and change its

position a little each time.
30 NEXT I
40 END

Steps

Sometimes it is useful to change the value of J by amounts other than 1. For instance, you
may want to go up in 3s or down in 7s. To do this you use the word STEP. In the following
program STEP -1 makes J go down by 1 each time the computer passes through the
loop in lines 10 to 40.

Greedy computer program
r The figure 2 stops the loop after

5 CLS \ J=2 (i.e. when there is one pie

*10 FOR J=7 TO 2 STEP -1 ^ left)’

20 PRINT “THERE ARE ”;J;“ PIES LEFT”

'30 NEXT J

40 PRINT 1,0015

50 PRINT “I SHALL EXPLODE”

,r60 FOR K= 1 TO 1000 -n

(70 REM: DO NOTHING j

' 80 NEXT K

90 PRINT

100 PRINT “BANGSPLATT”

^Loop

There are two loops in this program. The
one from lines 10 to 30 makes the
computer print line 20 six times. Each time,
the value of J is reduced by one and the
figure for J is printed in line 20. In the loop
from lines 60 to 80 the computer does not

have to do anything. It just runs through all
the values for K from 1 to 1000 and this
makes it pause for a moment. Lines which
start with REM (short for remark) are
ignored by the computer and are useful to
remind you what the program is doing.

Program puzzles
1. Can you alter the eight times table
program on the left to make it display
“ 1 x 8=” as well as the answer?

2. Can you write a program for the “N”
times table, that is, a program which
works out the tables for any number
you type into the computer? First you

need to get the computer to ask you for
a number, N. Then use a loop to work
out and display the tables. If you want,
include some lines at the end of the
program so it asks you if you want the
tables for another number and the
program repeats itself.

75

Tricks with loops
Here are some more programs using loops. Below you can find out how
you can use loops within loops to repeat several things at the same time.
These are called nested loops.

1 Nested loops

5 PRINT T, T
.10 FOR 1=1 TO 3

FOR J=1 TO 3^

30 PRINT I, J Jloop

40 NEXT J ^Ildop

50 NEXT I --

60 END

This program has an I loop and a Jloop.
The J loop is nested inside the I loop and
for each time that the I loop is carried out,
the J loop is repeated three times, printing

out the value for J each time. The picture
above shows the result of this program.
The commas spaced the figures out like
this.

Jugs in loops

.10 FOR 1=1 TO 4 '
L20 FOR J=1 TO 4 '
(30 PRINT I
(\ 40 PRINT J
V 50 NEXT I
'60 NEXT J -

Inside a computer there is an electronic
“clock” which sets the rhythm for all the
computer’s work. The clock pulses at
between one and four million pulses a
second. This program makes the
computer behave like a digital clock.

It has nested loops, one to count the
seconds and one to count the minutes.

Both parts of a
nested loop must
be inside the other^^^Vi

^one. - '
The seconds loop is earned out 59 times
for each minute loop. If you try this
program on a computer it might run very
fast at first. You need to put in an extra
“delay loop”, then set it by changing the
figure in the loop so your computer clock
“ticks” at the same rate as a real one.

I Random number tester

10 FOR 1=1 TO 1000
20 LET R=INT(RND(1)*6+1)
30 IF R=1 THEN LET A=A+1
40 IF R=2 THEN LET B=B+1
50 IF R=3 THEN LET C=C+1

IF R=4 THEN LET D=D+1
70 IF R=5 THEN LET E=E+1

IF R=6 THEN LET F=J
90 NEXT I

00 PRINT
10 PRINT A, B,

120 PRINT D, E, F
130 END

This program takes1
a long, longtime.
You can make it
shorter by changing
thenumberin linelO
:o 500 or even 250.>

This program shows if RND really
works. The loop from lines 10 to 90
makes the computer pick a random
number between 1 and 6 a thousand
times. It keeps count of how often each
number is picked in the variables A to
F, then prints out the results. *

*On some computers, e.g. ZX81 and BBC micro, you need some extra lines at the beginning of the
program to set each variable to 0.

Pattern repeat program

This program uses nested loops to repeat a small pattern all over the
screen. The program looks quite complicated but if you read it through
carefully and work out what each line does, you will soon see how it
works. The shape of the pattern is decided by random numbers and
will be different each time you run the program.

Torcomputerswhich ^
have high resolution

> graphics use larger ‘
random numbers,
e.g.on BBC micro
change figure in

k lines 10to 40, to 60.,

5 CLS

10 LET A=INT(RND(1)*6+1)
20 LET B=INT(RND(1)*7+1)
30 LET C=INT(RND(1)*6+1)
40 LET D=INT(RND(1)*4+1)
50 INPUT “HOW MANY POINTS

ACROSS THE SCREEN”; W
60 INPUT “HOW MANY UP”;V
65 CLS
70 FOR 1=0 TO V STEP V/6

/80 FOR J=0 TO W STEP W/6
f 90 PLOT (J+A.I+B)

100 PLOT (J+A.I+C)
110 PLOT (J+C.I+D)
120 PLOT (J+B, I+D)

v/130 NEXT J
140 NEXT I
150 END

These lines choose the random
- numbers for the pattern and

store them in A, B, C and D.

The I loop counts the number of times the
pattern is repeated up the screen. Each time, I
is increased by the height of the screen (V)
divided by 6, so the pattern is repeated six
times up the screen.

Each time the loops are repeated, lines 90 to
- 120 tell the computer to plot four pixels using

the current values for I and J plus the random
numbers.

The J loop counts the number of times the
pattern is repeated across the screen. It works
in the same way as the I loop.

O 7
U 6

5 • 2,5 12,5 «
4 First pattern Second pattern
3 • 2,3 12,3*
2
1 3,1 • «5,1 13,1# *15,1

0 2 4 6 8 10 12 14 16 18 20

Imagine that the computer
has chosen the random
numbers 2,5,3 and 1 and
that the width and height of
the screen are both 60.

On the first run through the program I and J are 0 so the
computer plots the first pattern of dots using only the
random numbers. Line 130 sends it back to find the next
value for J which is J+60/6, i.e. 10. Then it plots the
second pattern using the random numbers plus 10 for J.
This repeats the pattern along the screen.

The computer repeats the J loop six times, is 10. J is set to 0 again and the computer
each time adding 10 to J and so plotting the plots the next line of patterns using 10 for I
pattern further along the screen. It then and increasing J by 10 each time as before,
goes back to find the next value for I which

* Program puzzle Can you write a pattern repeat program which repeats a space invader shape
over the screen? There are some hints to help you on page 93.

77

Subroutines
A subroutine is a sort of mini-program within a program. It carries out a
particular task, such as adding numbers or keeping a score, and you can
send the computer to it whenever you want this task carried out. This
saves writing out the program lines each time and makes the program
shorter and easier to read and type into the computer.

Suppose you had a robot helper whom
you could program to run errands for you.
If you wanted something from the shop
you would have to give it precise
instructions telling it how to get there.

Each time you wanted the robot to buy
something you would have to give it the
same instructions. It would be much
simpler to give the robot a shopping
subroutine and tell it to refer to it each time.

Shopping program

10 PRINT “WHAT DO YOU WANT FROM THE SHOP”
20 INPUT X$
30 GOSUB 100

PRINT “ANYT
50 INPUT M$
60 IF M$=“YES” THEN GOTO
70 STOP }

Line 30 sends the
computer to the first
line of the subroutine.

100 REM: SHOP SUBROUTINE
110 PRINT “GO OUT, TURN LEFT’
120 PRINT “LEFT AGAIN, ENTER SHOP”
130 PRINT “BUY ”;X$;“ COME HOME”

140 RET

You need the word
STOP at the end of the
main program to stop
the computer
carrying on into the
subroutine.

It is useful to label a
subroutine with a
REM line so you know
what it is for.

_ This sends the
computer back to line
40-the line after
GOSUB.

In BASIC, to tell the computer to go to a
subroutine you use the word GOSUB with
the word RETURN at the end of the
subroutine. GOSUB should be followed by

the number of the first line of the
78 subroutine. RETURN does not need a line

number. The computer automatically
goes back to the instruction after the one
where it left the main part of the program.
You can send the computer to a
subroutine anywhere in the program as
many times as you like.

Gosub programs

A subroutine is useful for carrying out any task which you want to repeat several times at
different stages in the program. Here are some more programs with subroutines.

K
Numbers program

50 INPUT A
60 INPUT B
70 GOSUB 250
80 PRINT “A DIVIDED
90 GOTO 50

250 REM: SUBROUTINE TO STOP
IF A=0 AND B=0 THEN STOP

270 RETURN

This subroutine provides an escape from
the program. If you want to stop dividing
you input 0 at lines 50 and 60. This
program does not need STOP before the
subroutine as line 90 sends it back.

Conversion program

100 INPUT “DISTANCE” ;M
110 INPUT “TIME”; T
120 GOSUB 200
130 PRINT “AVERAGE’SPEED WAS’7'
'140 PRINT M/T; “ MPH AND ”; K/T; “ KPH

STOP
200 REM: SUBROUTINE TO CONVERT I
210 LET K=M*1.6i

RETURN

is a subroutine to convert miles to
kilometres. You can often use the same
subroutine in lots of different programs.
Check that you use the same variable
names, though.

Circles program

1 Centre of circle = X,Y
2 Radius of circle = R /This program
3 Colour = (English, not BASIC,
4 Gosub 10 Vtogive you the

fc5Gotol V^general idea.
”l0 Rem: Subroutine to draw circles *

11 Draw a circle with centre X, Y;
^ radius Rand colour X.
* 12 Return

Subroutines are useful in graphics
programs like this to draw diagrams with
numbers worked out in the main part of

Quiz program

5 LET C=0
10 PRINT “WHEN WERE THESE THINGS INVENTED?"
20 READ C$, F]-
30 PRINT C$]_
40 INPUT A
50 LET C=C+1

D IF C=3 THEN STOP J
70 GOSUB 100
80 GOTO 10

100 REM: ANSWERS SUBROUTINE
120 IF ABS(A—F)< 10 THEN PRINT “OK”
110 IF ABS(A—F)>10 THEN PRINT “NO"
130 PRINT “TRY ANOTHER ONE”
140 RETURN

The counter C stops the program
” after it has repeated three times as

there are only three data items for
CSandF.

- This is the subroutine.

Each time the program is
repeated the words and numbers
in C$ and F are replaced by the
next pair of data items.

200 DATA TELEPHONE, 1876, PRINTING PRESS, 1450, BICYCLE, 1791]-1

This program uses a subroutine to check
the answers to questions. The correct
answers are stored in F and the person’s
answers go in A. In lines 100 and 110 of the
subroutine the computer compares A with
F. The word ABS stands for “absolute” and

it makes the computer check the
difference between the numbers in A and
F (it ignores any minus signs). If the
difference is less than 10 it prints “OK”. If it
is more than 10 it prints “NO”.

the program. With this program you could
draw lots of different circles by giving the
computer different information in lines 1 to 5.

At line 20 the computer looks
for the data line and puts the
first word item in C$ and the

- first number item in F.

- This prints out the word in C$.

Doing things with words
Most computers can examine the words stored in variables and do
various things with them. They can check the contents of a variable and
see if it contains a particular word or letter. This is useful for checking the
words input by someone using the program. Computers can also
rearrange the letters or words in a different order and add them to letters
in other variables. Below you can find out how you do these things in
BASIC.

On most computers.

10 A$="l AM STUPID"

20 B$="ONLY FOOLS THINK"
30 C$=B$+" "+A$
RUN

ONLY FOOLS THINK I AM STUPID

You can add the contents
of two variables like this.
You need the space
between quotation
marks to leave a space
between the words.

PRINT LEFT$(B$,4)
ONLY

PRINT LEFT$(B$,4)+" "+A$

ONLY I AM STUPID

’ PRINT RIGHT$(A$,6)
STUPID

To tell the computer to use
letters from the right you
use RIGHTS with the name
of the string and the
numbers of letters you want.

10 K$="DING DONG!"
20 PRINT LEN(K$)
RUN

You can also find out the
length of a string - the

number of letters, spaces
and symbols it contains. To
do this you use LEN, short
for length.

kWhen you areN^I/
{ counting letters,
} count spaces

and punctuation too.

IFA$="COMPUTER BOOK"
what is LEFTS (A$,8)?
RIGHTS (A$,10)? r

^MID$(A$,5,8»? J

PRINT MID$(B$,6,5)
FOOLS

This tells the computer to take
the middle letters. The first
number tells it where to start
and the second tells it how
many letters to take.

^Note for Sinclair ^
users

PRINT A$(6 TO 11)
STUPID

PRINT B$(14 TO 16)
INK_

/This means take\
(letters numbers) ifkj-

*to11' _ "

The Sinclair computers do
not use LEFTS, RIGHTS and
MID$, but you can tell the

computer to take any letters
you want as shown above.

Codemaker program

This program automatically puts words into code. Similar, but much more complex
programs are used by intelligence services to write and crack codes.

The easiest way to understand this program is to write a secret message on a piece of
paper, then work through the lines of the program carrying out the computer’s tasks on
your message and writing them down.

5 LET C$=“”1

7 LET D$=“”J

10 PRINT “TYPE IN A SHORT MESSAGE”

20 INPUT M$

30 PRINT “NOW TYPE IN A SECRET

NUMBER BETWEEN 2 AND”;LEN(M$)

40 INPUT N

50 LET A$=RIGHT$(M$,N)]-—

60 LET B$=LEFT$(M$,LEN(M$)-N)]-

70 LET M$=A$+B$]-

*80 FOR 1=1 TO LEN(M$) STEP 2l/'^'~

(90 LET C$=C$+MID$(M$, 1,1)

' 100 NEXT I

<110 FOR J=2 TO LEN(M$) STEP 2l

120 LET D$=D$+MID$(M$,J, 1)

\ 130 NEXT J

140 LET M$=C$+D$]-.

150 PRINT “CODED MESSAGE IS”

160 PRINT M$

170 END

- Sets up empty string variables.

hThis means the length of your
message minus 1.

N (your secret number) letters from
_—■— the right of M$.

The length of M$ minus N number of
letters from the left of M$ (i.e. the rest
of the letters).

Replaces the letters in M$ with A$+B$.

From 1 to the number of letters in your message
going up in twos, i.e. 1,3,5, etc. Each time the I
loop is repeated line 90 takes one letter from
position I of M$ and puts it in C$.

From 2 to the number of letters in your
message, going up in twos, i.e. 2,4,6, etc.
Works in the same way as the I loop.

Replaces the letters in M$ again.

Suppose your message is
“Move tonight” and your
secret number is 4. These
are stored in M$ and N.

In lines 50 and 60 the computer uses your secret number
to divide the message. At line 50 it takes four letters from

the right of the message and puts them in A$. At line 60 it
puts the rest of the letters inB$.

At line 70 it adds A$ and B$. Each time the I loop repeats it puts an odd-numbered
This puts the letters from the letter in C$ (e.g. I, H, M, etc.). Each time the J loop

end of the message at the repeats it puts an even numbered letter in D$ (e.g. G, T,
front. O, etc.). Then it adds C$ and D$ to make the coded

message.

Graphs and symbols
You can program a computer to present information in all kinds of
different ways, for instance, as words, numbers, pictures or graphs.
Complicated information can be made much easier to understand if you
illustrate it with graphs, pictures and symbols.

J Drawing a graph

Imagine a peach tree whose yield of fruit
increases each year in relation to its age.
This can be expressed as an equation, say

Y=3X+2 (Y is the yield and X is the age). It
is hard to grasp what this means, though,
and drawing a graph would help.

With a computer it is very easy to draw a

graph of the way Y changes in relation to
X. To plot the graph you need to find the

value of Y for each value of X. You can do
this very easily in a program using the
statement LET Y=3*X+2.

This is the program for drawing this calculate Y and line 30 plots X and Y on the

graph. The loop sets X at all the values screen. In graphs programs, you must
from 1 to 14. Each time the loop is make sure the maximum values for X and

repeated, line 20 uses the value of X to Y will fit on the screen or you will get a bug.

Computers and maths

In calculations which have several

parts, such as 3xX+2, the computer
always does the multiplications or

divisions before it adds or subtracts.
This means that the computer would
give the same answer for these two sums:

If you want the computer to do the sum
in a different order you use brackets,

like this:

PRINT (8+4)*6
72

This time the computer adds 8 and 4,

then multiplies by 6.

Program puzzle

THINK OF A NUMBER
DOUBLE IT, ADD 4
DIVIDE BY 2, ADD 7
MULTIPLY BY 8, SUBTRACT 12
DIVIDE BY 4 AND TAKE AWAY 11
TELL ME THE RESULT.
THE NUMBER YOU FIRST THOUGHT

Can you write a program to get the
computer to carry out this well known
number trick? (To find the number you
first thought of you subtract 4 from the
result, then divide by 2.)

Birthdays program

This program uses another way to display information on the screen. It uses symbols to
compare the number of people who were bom in different seasons of the year. You

could use a program like this to compare, say, sightings of a certain bird in different
seasons, or the number of wins of different football teams. Before writing a long
program like this it is a good idea to write a program plan.

Program plan
Aim: To compare the number of people with birthdays in winter, spring, summer and

autumn.

1. Give the computer the data (i.e. the

seasons when the people were bom)
fora survey of 20 people.

2. Store the data in the computer.
3. Present the data on the screen.

The program
5 LET A=0
6 LET B=0
7 LET C=0
8 LET D=0

„10 FOR 1=1 TO :

Sample run

Empty variables ready to
use for running totals for
each season.

]-

RUN
WINTER TOTAL*******
SPRING TOTAL***
SUMMER TOTAL*****

AUTUMN TOTAL*****

3 PRINT “PERSON ”;I;“ WAS BORN IN”
3 PRINT “WINTER, SPRING, SUMMER OR AUTUMN”

40 PRINT “TYPE W, SP, SU OR A”
3 INPUT B$
3 IF B$=“W” THEN LET A=A+1

70 IF B$=“SP” THEN LET B=B+1
3 IF B$=“SU” THEN LET C=C+1
3 IF B$=“A” THEN LET D=D+1

100 NEXT I }

- Loop to make computer ask
question once for each person in
survey.

Lines 60 to 100 check the answer
in B$ and add one to the variable
for that season.

110 PRINT “WINTER TOTAL”;
115 LET N=A
120 GOSUB 200]-
130 PRINT “SPRING TOTAL”;
135 LET N=B]-
140 GOSUB 200
150 PRINT “SUMMER TOTAL”;
155 LET N=C]-
160 GOSUB 200
170 PRINT “AUTUMN TOTAL”; --
175 LET N=D
180 GOSUB 200
190 STOP
200 REM: SUBROUTINE TO PRINT STARS
210 IF N=0 THEN GOTO 250]-"

*220 FOR 1=1 TO N]-1-
[230 PRINT “*”;
'240 NEXT I

250 PRINT
260 RETURN

Sends computer back to repeat question.

The subroutine makes the computer print a
. number of stars equal to the number in each

By putting the total into N each time, the
- computer can use the same routine for each

_ Makes the computer stay on the same line to

Line 210 checks in case no-one was bom in a
" particular season.

- The main program sets N to the total for A, B, C
or D. The loop makes the computer carry out
line 230 “N” times.

More graphics
These two pages show how you can use PLOT and UNPLOT to make
moving pictures on the screen. Moving pictures are called animated
graphics and they are useful for games programs, or to illustrate
programs which explain, say, the principles of gravity or ballistics and
flightpaths.

The pictures for video and arcade games A general purpose microcomputer

are controlled by a small computer. The programmed in BASIC makes slower,
computer is programmed to play only the simpler pictures. It cannot handle all the
games and the programs are in the instructions for the screen quickly enough
computer’s own code, not in BASIC. to make really fast moving graphics.

Plot/unplotprogr

1
10 LET X=1

20 LET Y=1

30 PLOT (X,Y)

40 UNPLOT (X,Y)

50 LET X=X+1

60 LET Y=Y+1

70 GOTO 30

This short program makes a spot of light When the spot reaches the edge of the
move across the screen. Remember, the screen the program may stop with an
commands for PLOT and UNPLOT vary on error message as the values for X and Y

different computers. are outside the screen range of the computer.

Bat and ball video games use programs When the ball reaches the top of the
like the one above to move the ball on the screen the amount to be added to Y is
screen. There are simple program rules to subtracted instead. In the same way, when
keep the ball moving when it reaches the it reaches the right edge, the amount is
edge of the screen. subtracted from X.

Line pattern program

This program plots a line across the
screen and when it reaches the sides,
sends it back again in another direction. It
does not use UNPLOT so the lines leave a
pattern on the screen. The picture on the
right shows what happens when you run
the program. The program is set by line
100 to plot 10,000 pixels. You can change
this figure to make it shorter, or BREAK the

program at a pattern you like.

10 REM: SET UP GRAPHICS MODE HERE IF NECESSARY

20 PRINT “HOW MANY PIXELS ACROSS?”

30 INPUT H

40 PRINT “AND UP?”;

Lines 20 to 50 ask for the height and width
of the screen. The semi-colon puts your
reply on the same line as the question.

50 INPUT V

55 CLS

60 LET X=H/2]_

70 LET Y=V/2 J

80 LET S=1 1

90 LET T=1 j

This makes X and Y start at the centre of the screen.

S and T are the amounts that will be added to X and
Y to make the line move.

^00 FOR 1=1 TO 10000]-

110 LET S=S+(INT(RND(1)* 10+1)—5)/50

120 LET X=X+S

130 LET Y=Y+T

140 IF X<5 THEN LET S=-S

150 IF X>H—5 THEN LET S=-S _

160 IF Y<5 THEN LET T=-T

170 IF Y>V—5 THEN LET T=-T

K
The-loop from lines 100 to 190 is repeated 10,000 times
Each time, X and Y are changed by a small amount.

This gives a very small number to add to X. The
number varies each time the loop is repeated.

These lines test for the edges and
reverse S and T when X and Y come
within five pixels of an edge.

1180 GOSUB 300]-Sends the computer to the subroutine to plot the line

190 NEXT I

200 STOP

300 REM: PLOT LINE

310 PLOT (X,Y) J- Plots the pixel with the current value for X and Y.

320 RETURN

Experiments

Line 110 adds a very small random amount
to X each time and this makes the line
wiggle across the screen. If you have a
computer, try deleting this line. The lines
on the screen should become parallel.

Try changing the numbers in lines 80 and
90 to; say, 5 or 10 (or larger on a computer
with high resolution graphics). This
makes the computer plot the pixels at
intervals. 85

Funny poems program
The next few pages show you how to write a program which can compose
lots of poems. A version of this program first appeared m the Usbome Guide
to Computers. That book showed how to make a "paper computer” which
used a simple version of this program. Here you can find out how ^\
to write the same program in BASIC.__' 1

Program for the paper computer
Data lines

I——

WHO

Data words

1 A=0andB-0 \

iSSST’
, rs---
\ 9 Gotoline2

\ 10 Stop

WHERE it WENT ITS INTENT^

IT GLOWED IT BLEW ttd ~ -
7=- . - ---— 17 turned blue

iri555
There was a
Who wra99edo9 hvs head vrv cement

, Ore hvaht after dark
1 \v turned Woe in the pary.
A ^.r wortedout where fc went

This is the program for the paper progr
computer. It looks a little like BASIC, but it numb

would not work on a real computer. The genei
words and phrases for the poem are betwe

“stored” on pieces of paper and the

J Translating the program into BASIC /

10 LET A=0] '
20 LET B=0 J-These

30 LET A=A+1]_Lines:
40 IF A=6 THEN STOPJ data In

50 Write data line A J-Lines:
60 LET B=B+1]-Line6(
70 LET N=INT(RND(1)*4+1)]-Gives;
80 Write data words from row B

column N
90 IF B=3 THEN GOTO 60 1_Lines S
100 IF B=5 THEN GOTO 60 J datalii

110 GOTO 30
120 END

program tells you which to select. The
number spinner is a random number
generator to give random numbers
between one and four.

\SIC /-''Th is won't work) Jq&f
(on a computeryet. V

' These lines set up empty variable spaces.

_ Lines 30 and 40 keep count of the number of
data lines the computer has selected.

- Lines 50 and 80 are not in BASIC yet.

- Line 60 keeps count of the number of data words.

- Gives a random number between 1 and 4

Most of the program is easy to translate
into BASIC, but lines 50 and 80 are more
difficult. The computer needs a way of

storing and picking out the data lines and
words which are needed for each line of
the poem.

2 Giving the computer data

180 DATA THERE WAS A YOUNG MAN FROM,
WHO, HIS

190 DATA ONE NIGHT AFTER DARK, AND HE
NEVER WORKED OUT

To give the computer the data lines and You can store all the data items in one big
words you can use READ ... DATA. Each variable called A$. A variable containing
time the computer carries out the READ
instruction it takes another item from the
DATA line and stores it in the variable.

more than one data item is called an array
and each item is referred to by a number,
e.g. READ A$(3) gives HIS.*

A variable can also hold several rows of column it is in. So READ B$(4,2) gives
data and you can store all the data words WITH CEMENT and READ B$(6,3) gives
in a variable like this. It is called a two- FOR A LARK. You can store numbers in
dimensional array. Here, each data item is arrays, too, using a number variable,

referred to by the number of the row and e.g. N(5,7).

^ Putting the data in the variables r—

10 FOR 1=1 TO 7]-I is the row number 1 I l*1 2 3 +1

60 DATA TASHKENT, TRENT, KENT, GHENT *
70 DATA WRAPPED UP, COVERED, PAINTED, FASTENED , rmiM.ci;
80 DATA HEAD, HAND, DOG, FOOT 1-
90 DATA IN A TENT, WITH CEMENT, WITH SOME SCENT, THAT WAS BENT
100 DATA IT RAN OFF, IT GLOWED, IT BLEW UP, IT TURNED BLUE
110 DATA IN THE PARK, LIKE A QUARK, FOR A LARK, WITH A BARK
120 DATA WHERE IT WENT, ITS INTENT, WHY IT WENT, WHAT IT MEANT <

To read each data item into the variable
you need to be able to alter the numbers in
brackets after READ. You can do this with
loops. B$ needs nested loops as shown
above with an I loop for the row number

and a J loop for the column number. Each
time the I loop is carried out the J loop is
repeated four times - once for each of the
columns in a row.

a different way and this program will not rt
ver the page.

0 Making space for variables

5 DIM K$(5) 3_This is the size of the variable,
10 FOR 1=1 TO 5 i-e. 5 items in a row.

20 READ K$(I)1-This line puts the data in K$
30 NEXT I J each time the loop is repeated.

40 STOP

60 DATA DOG, CAT, FROG, BUG

At the beginning of the program you have
to tell the computer how big you want the

variable to be. You do this with the word
DIM followed by the variable name and
the number of data items, e.g. DIM K$(5).

For a two dimensional array you give the
computer the number of rows and
columns in the variable, e.g. DIM C$(5,3).
You must always have the right number of
data items for the variable or you get a bug.

0 Printing out the data

200 LET A=0
210 LET B=0
220 LET A=A+l]-
230 IF A=6 THEN STOP
240 PRINT A$(A)
250 LET B=B+1]-
260 LET N=INT(RND(1)*4+1)
270 PRINT B$(B,N)
280 IF B=3 THEN GOTO 2501_
290 IF B=5 THEN GOTO 250 J
300 GOTO 220]---
310 END

The computer needs these lines to print
out the data lines and words in the right
order. This section of the program is
repeated five times. Each time, the

A keeps count of the number of times this
section of the program is repeated.

B keeps count of the data word rows and
makes sure that the correct row is used with
each data line.

Lines 280 and 290 make the computer print out
words from another data word row before
printing the next data line.

This sends the computer back to print the next
data line.

computer prints out data line number A
and some data words from row number B.
The actual data words which are chosen
are decided by random number N.

Sinclair computers and variables
This program does not work in its
present form on Sinclair computers
because they handle strings in a
different way.

For two-dimensional arrays you have to
tell the computer the number of the row
as well as the numbers of the

characters. For instance, A$(2,4 TO 6)
is PUG.

m

To tell a Sinclair computer to pick out a
particular data item from a variable you
have to give it the numbers of the first
and last characters of the item you
want. This is the same system as the
Sinclairs use for LEFTS, RIGHTS, etc.
(See page 80.)

At the beginning of a program you tell
the computer how many rows the array
has, and how many characters there
are in each row, e.g. DIM A$(2,9)
means two rows, each with nine
characters. All the rows in the array
must have the same number of
characters.

The complete funny poems program

Now you can put the parts of the program together and write the complete poetry

program. The first part of the program (lines 10 to 190) give the computer the data and
the second part (lines 200 to 310) prints out the poem. Each time you run the program
you get a different version of the poem because the random number N makes the
computer pick different words.

Lines 80 to 140
contain all the data
words to be stored

) DIM A$(5) 1_Lines 10 and 20 tell the computer how much space to leave I
3 DIM B$(7,4) J the variables - a row of 5 for A$ and 7 rows of 4 for B$.
3 FOR 1=1 TO 7'

3 FOR J=1 TO 4 -These are the nested loops for putting the data in B$.
3 READ B$(I, J)
3 NEXT J Lines 80 to 140
3 NEXT I J contain all the do
3 DATA TASHKENT, TRENT, KENT, GHENT words to be stori
3 DATA WRAPPED UP, COVERED, PAINTED, FASTENED in B$.
3 DATA HEAD, HAND, DOG, FOOT
3 DATA IN A TENT, WITH CEMENT, WITH SOME SCENT, THAT WAS BENT
3 DATA IT RAN OFF, IT GLOWED, IT BLEW UP, IT TURNED BLUE
3 DATA IN THE PARK, LIKE A QUARK, FOR A LARK, WITH A BARK
3 DATA WHERE IT WENT, ITS INTENT, WHY IT WENT, WHAT IT MEANT
3 FOR 1=1 TO 51
3 READ A$(I) - This is a loop to put the data into A$.

3 NEXT I J
3 DATA THERE WAS A YOUNG MAN FROM, WHO, HIS
3 DATA ONE NIGHT AFTER DARK, AND HE NEVER WORKED OUT
3 LET A=0
3 LET B=0 Lines 180 to 190 contain all the
3 LET A=A+1 data lines to be stored in A$.

3 IF A=6 THEN STOP
i opttvt 1_ This prints the data line stored

tt-Td V:, J in A$ compartment number A.
J Lbl d-dt 1

3 LET N=(RND(1)*4+1) This prints the data words
3 PRINT B$(B,N) 3-- stored inB$ row B, column N.
3 IF B=3 THEN GOTO 250 ooft
3 IF B=5 THEN GOTO 250 The program stops at line 230
i nrern oon when A=6, so it never reaches
{ line 310, but some computers
3 END ™^anFNfnam™™v

when A=6, so it never reaches
line 310, but some computers
need an END anyway.

Sample runs

THERE WAS A YOUNG MAN FROM
KENT
WHO
WRAPPED UP
HIS
HEAD
IN A TENT
ONE NIGHT AFTER DARK
IT GLOWED
LIKE A QUARK
AND HE NEVER WORKED OUT
WHY IT WENT

THERE WAS A YOUNG MAN FROM
GHENT
WHO
PAINTED
HIS
FOOT
WITH CEMENT
ONE NIGHT AFTER DARK
IT TURNED BLUE
WITH A BARK
AND HE NEVER WORKED OUT
ITS INTENT

Here are two of the 16,384 possible make the computer produce different

different versions of the poem. If you try random numbers. Some computers
this program and always get the same produce the same sequence of random

poems, look in your manual for how to numbers each time they are switched on.

Programming tips
On these two pages there are some
tips to help you write your own
programs, and a list of the most
common bugs you might get, and
what causes them. The most likely
bugs are listed first, so if you have a
program which will not work,
check through this list until you find
the reason.

Finding bugs

Look for typing mistakes in BASIC words.
If you misspell one of these words the
computer will not recognize it.

Check Os and Os and Is and Is to make
sure you have typed the right ones in the
right places.

If you have a Sinclair computer, make sure
you have not typed a word in letter by
letter instead of pressing the key for that
word.

Writing programs

When you are writing programs it
helps to remember that the computer
can carry out three main activities:

simple instructions, repeating things
and making decisions. These are the
building blocks of all programs.

SIMPLE
INSTRUCTIONS 1 LET A=3

LET N=N+1

PRINT A/T

PLOT (X,Y)

FOR J=1 TO 6

20 LET A=1

30 IFA< 10, THEN

GOTO 100

IF X=Y THEN STOP

IF K$=“HELLO”

THEN PRINT A

This book has covered all the main
instructions you need in BASIC to tell
the computer to carry out these
activities. When you are writing a

program, work out what the computer
needs to do at each stage, then decide
which instructions you want to use.

| Missing quotes

PRINT "SHOESTRING ^

DATA ONE, TWO THREE^y *

Missing comma wm
Make sure you have not left out any
quotation marks, or the commas between
data items. Check complicated lines
which have lots of symbols especially
carefully.

Error messages

There are usually several different
ways to write a program and some of
them may be neater and shorter than
others. When you are writing a long
program it is a good idea to divide it up

into lots of sections with subroutines to
carry out each activity. The central core
of the program may be a simple set of

instructions, decisions and repeats
which controls when and how often the
computer carries out the subroutines.

Breaking up programs into sections
like this makes it much easier to find

any mistakes. Each section can usually
be tested by itself without running
through all the program. Remember to
label each section with a REM line so
you know what it is for.

Make sure you use the correct RND, PLOT
and CLS commands for the computer.
Check, too, that you have given the
computer a general graphics line if it
needs one.

All computers print out some sort of
message when there is a bug in the
program and the messages are explained
in the computer's manual. Here are some
of the most common messages you may
get.

◄ This means there are not
enough data items for the
computer to read in the
DATA lines. It may be
because you have missed
out a comma between two
items, so the computer has
read them as one.

► The line with the number
given in a GOTO or GOSUB

statement does not exist.
You may have accidentally
erased the line by typing in
another line with the same
number, or you may have
just mistyped the number.

◄ You may get this report
on a BBC or Sinclair

computer. It usually means
you have not set up a
variable with a line such as

LETC=OorLETC=“”
before using it.

► This means the NEXT line
of a loop is missing. It may
be because you typed the
wrong variable name, or
even put a 1 instead of an I

so the computer did not
recognize it.

Some bugs are very hard to find, but
if the computer will not run the
program there must be a bug in it
somewhere. If you really cannot find
the bug, try typing in suspect or
complicated lines again, you might
get them right the second time
without even noticing what the bug

Puzzle answers
Page 63
Name and message program

10 PRINT “WHAT IS YOUR NAME”

20 INPUT N$
30 PRINT “HELLO”
40 PRINT N$
50 PRINT “HOW ARE YOU”

Page 65

1. Sums program

10 LET A=9
20 LET B=7
30 PRINT A*B
40 PRINT A/B
50 LET A=A+1
60 LET B=B+3

70 PRINT A*B,A/B Comma to
80 END v-leave space

2. Tables program ^Spaces

30 PRINT A;“ TIMES ”;B;“IS”;A*B
40 PRINT A;“ DIVIDED BY B;“ IS A/B

3. Name and message
alterations

10 PRINT “WHAT IS YOUR NAME”

20 INPUT N$
30 PRINT “ HELLO ”;N$;“ HOW

ARE YOU

Page71

Plotting counter

5 LET C=0
45 LET C=C+1
50 IF C<6 THEN GOTO 10

Plotting your initial

Here is an example of a program to plot
the letter L.

10 LET X= 15

20 LET Y=30
30 PLOT (X,Y)
40 LET Y=Y-1

50 IF Y>5 THEN GOTO 30
60 LET X=X+1
70 PLOT (X,Y)

80 IF X<45 THEN GOTO 60
90 END

Page 72
Random numbers

The formula for a random number

between 10 and 20 would be
INT(RND(1) * 11+9). On computers which
need only a number in brackets after

RND, it would be RND(11)+9. There are
eleven possible numbers between 10 and
20 so you need to pick random numbers
between 1 and 11, then add 9.

Page 66

Sums program

10 PRINT “WHAT IS 7 TIMES 7”

20 INPUT A
30 IF A=49 THEN PRINT “CORRECT”
40 IF A<>49 THEN PRINT “NO”;7*7

f
You need a semi-colon after the
quotes, like this.

Page 73

Space attack

These are the lines you need to add to
count the number of hits:

15 LET S=0
75 IF X=A*B THEN LET S=S+1
95 PRINT “YOU HIT ”

;S;“ OUT OF 6 ALIENS”

Page 67

Age guessing game

Replace line 30 and add a new line 35:

30 IF G<14 THEN PRINT “OLDER

THAN THAT”
35 IF G>14 THEN PRINT “YOUNGER

92 THAN THAT”

Page 75

1. Eight times table

10 PRINT “THE EIGHT TIMES TABLE”

20 FOR J=1 TO 12
30 PRINT J;“x8 = ”;J*8

40 NEXT J

Page 75
2. N times table

Page 82

Numbertrick program

10 INPUT “TYPE IN A NUMBER” ;N
20 PRINT “HERE IS THE ”

;N;“ TIMES TABLE”
30 FOR 1=1 TO 12
40 PRINT I;“ TIMES ”;N;“ IS ”;I*N
50 NEXT I

60 INPUT “ANOTHER NUMBER (Y or N)”
;M$

70 IF M$=“Y' THEN GOTO 10

For the ZX81 you need separate PRINT
and INPUT lines.

Page 80
Computer book string puzzle
LEFT$(A$,8) is “COMPUTER”
RIGHT$(A$,10) is “PUTER BOOK”
MID$(A$,5,8) is “UTER BOO”

Page 77
Space invaders repeat program

Draw a simple space invaders shape on
squared paper.

3
5 CLS

10 PRINT “THINK OF A NUMBER”
20 PRINT “DOUBLE IT, ADD 4”
30 PRINT “DIVIDE BY 2, ADD 7”
40 PRINT “MULTIPLY BY 8,

SUBTRACT 12”
50 PRINT “DIVIDE BY 4 AND TAKE

AWAY 11”
60 PRINT “TELL ME THE RESULT”
70 INPUT N
80 PRINT “THE NUMBER YOU FIRST

THOUGHT OF IS”; (N—4)/2

/
You need the brackets
to make the computer
do the sum in the order
you want.

3,4; 5,4; 7,4

4,3; 5,3; 6,3

3,2; 4,2; 6,2; 7,2

Then work out the co-ordinates of all the
squares which make up the space
invader.

50 INPUT “HOW MANY POINTS ACROSS THE SCREEN’;W
60 INPUT “HOW MANY UP”;V
65 CLS Change the 6 to a higher figure to increase the number of
70 FOR 1=0 TO V STEP V/6 1 times the invader shape repeats on the screen. (If you
80 FOR J=0 TO W STEP W/6j get a bug you have made the number too big.)

Put your plot lines here, e.g.
90 PLOT 0+3, 1+2)
92 PLOT 0+4, 1+2)
for the two bottom left-hand squares of the

140 NEXT I space invader shown above. You need a
150 END program line for each square.

130 NEXT J

Copy out the pattern repeat program,
excluding lines 10 to 40 and 90 to 140, as
shown above. (These lines produce the
random pattern for the program so you do
not need them.)
Now you need to put your own plot lines

into the program between lines 80 and 140
(you can renumber the lines in the
program). For each pair of co-ordinates
you need to add J to the first figure and I to
the second figure, to make the space
invader repeat.

Loading and saving programs

Loading and saving programs on cassette is quite tricky and you can
waste many hours trying to load a program you have saved. Below there
are descriptions of some of the problems you may encounter, with advice
on how to solve them.

Loading programs

To load a program successfully from tape
you need to find the correct volume setting
on your cassette recorder. If the output

from the recorder is too strong, or weak,
the computer will not be able to
understand the signals.

Finding the correct volume setting is

just a matter of trial and error. If your
recorder has a tone dial, set this to
maximum treble and leave it there. Set the

volume control to a middle position.
Follow the computer’s instructions for
loading programs and press PLAY on the

recorder. Most computers give some
indication to tell you when the program
has loaded, but sometimes you may load a
program successfully and then find it is full
of bugs because the output from the

recorder was distorted.

If you did not manage to load the
program, rewind the tape, type NEW on

the computer to clear out its memory, and
then try again with a slightly different
volume setting. After several attempts you
should find the correct volume level for
your computer.

If you still have problems, though, try
cleaning the heads of the cassette with a
cleaning tape. You can buy one of these

from a hi-fi shop. If this does not help, it
may be that the program you are trying to
load is badly recorded on the tape. If it is a
program you have saved yourself, read
the section opposite on saving programs.

If it is a tape you have bought ask someone
else, if possible, to try it on their
equipment, and if they cannot load it

return the tape to where you bought it.
After finding the correct volume setting

you should be able to use the same setting
to load all the programs you save yourself,
but bought tapes and those recorded by
other people may need slightly different

settings.

Saving programs
When you are saving a program you do

not have to worry about the volume setting
on the recorder. Just follow the computer’s
instructions for saving programs and
press RECORD on the cassette recorder.

It is a good idea to record the same
program several times.

After saving the program you can play it

back like an ordinary tape (pull the “ear”
lead out of the recorder so that its
loudspeaker works). You should hear a
series of high-pitched bleeps. Now try

loading the program to make sure it
works. If it is a bad copy you will not be
able to load it, or you may load it and find it

is full of bugs.
If you have a bad recording it may be

because the tape is old and crinkled or the
heads of the recorder may be dirty. Clean
the heads with a cleaning tape and try
saving the program again on different

tape. You will probably have lost the
program in the computer’s memory and

will have to type it in again.
If you still cannot load the program, the

output from the computer when you saved
the program may have been too strong, or

weak, for your cassette recorder.
Most inexpensive cassette recorders

have an automatic recording level control

so there is nothing you can do to adjust the

level of the signals going into the
recorder. The easiest solution is to try and
borrow a different make of cassette
recorder and see if this works with your

computer. You could also try asking a
local user group or dealer for advice. If
you take the computer and cassette
recorder to the dealer, they will check the

equipment and may be able to modify
either the cassette or the computer so that

they are compatible.
If your cassette recorder does have a

recording level control, try saving the
program lots of times at different
recording levels until you find the correct

setting. 94

ASCII chart ZX81 code chart

Code
number

ASCII
character

Code
number

ASCII
character

32 space 62 >
33 1 63 ■p

34 ” 64 h
35 # 65 A
36 $ 66 B
37 % 67 C
38 & 68 D
39 ’ 69 E
40 (70 F
41) 71 G
42 72 H
43 + 73 I
44 ’ 74 _I_
45 - 75 K
46 76 L
47 / 77 M
48 0 78 N
49 1 79 O
50 2 80 P
51 3 81 0
52 4 82 R
53 5 83 S
54 6 84 T
55 7 85 U
56 8 86 V
57 9 87 W
58 88 X
59 ; 89 Y
60 < 90 Z
61 =

Code ZX81 Code
number character number character

11 ” 41 D
12 £ 42 E
13 $ 43 F
14 44 G
15 o 45 H
16 (46 I

17)_ 47 I

18 > 48 K
19 < 49 L
20 = 50
21 + 51
22 - 52
23 * 53 wmm
24 / 54 w^mm
25 ; 55 R
26 , 56 S
27 57 T
28 0 58 U
29 1 59
30 2 60
31 3 61
32 4 62 nb

33 5 63 wmm
34 6
35 7
36 8
37 9
38 A
39 B
40 C

Chart of screen sizes

Max. number of Max. number of
characters across lines down
(or number of columns) (or number of rows)

VIC 20 22 23

TRS-80 64 16

BBC 20/40/80 16/24/32

ZX81 32 22

ZX Spectrum 32

CM
CM

Apple 40 25

T
ak

e m
id

d
le N

c
h

a
ra

c
te

rs o
f strin

g

T
ak

e la
st N

c
h
a
ra

c
te

rs o
f strin

g

T
ak

e 1
st N

c
h
a
ra

c
te

rs o
f strin

g

M
o

v
e c

u
rso

r rig
h
t

M
o
v
e c

u
rso

r le
ft

M
o
v
e c

u
rso

r d
o

w
n

M
o

v
e c

u
rso

r u
p

C
o

n
v

ert c
h

a
ra

c
te

rs
in

to
 c

o
d

e
 n

u
m

b
e
rs

C
h
eck

 k
e
y

b
o

a
rd

 to

se
e

 if k
e
y

 b
e
in

g

p
re

sse
d

C
le

a
r sc

re
e
n

S
elect ra

n
d

o
m

 le
tte

r
b

e
tw

e
e
n

 A
 a

n
d

 Z

S
elect ra

n
d
o
m

n
u
m

b
e
r b

e
tw

e
e
n

 1
a
n
d
N

S
elect ra

n
d
o
m

n
u
m

b
e
r b

e
tw

e
e
n

 0
a
n
d

 0
.9

9
9
9
9
9
9
9

M
ID

$(A
$,N

1,N
2)

R
IG

H
T

$(A
$,N

)

L
E

F
T

$(A
$,N

)

P
R

IN
T

 C
H

R
$(9)

P
R

IN
T

 C
H

R
$(8)

P
R

IN
T

 C
H

R
$(10)

P
R

IN
T

 C
H

R
$(11)

A
S

C
(“X

”)
(u

sin
g

 A
S

C
II co

d
e)

IN
K

E
Y

$(N
)

g

C
H

R
$(R

N
D

(26)+
64)

R
N

D
(N

)

R
N

D
(l)

B
B

C

M
ID

$(A
$,N

1,N
2)

Q

1
2

L
E

F
T

$(A
$,N

)

P
R

IN
T

 C
H

R
$(29)

P
R

IN
T

 C
H

R
$(157)

P
R

IN
T

 C
H

R
$(17)

P
R

IN
T

 C
H

R
$(145)

A
S

C
(“X

”)
(u

sin
g

 A
S

C
II co

d
e)

G
E

T
X

$

P
R

IN
T

 C
H

R
$(147)

C
H

R
$(IN

T
(R

N
D

(1)
*

2
6

+
6

5
))

R
N

D
(1

)*
N

+
1

R
N

D
(l)

V
IC

/P
e
t

§

1
2

S3

R
IG

H
T

$(A
$,N

)

L
E

F
T

$(A
$,N

)

§

o
2

I

P
R

IN
T

 C
H

R
$(8)

P
R

IN
T

 C
H

R
$(10)

C
A

L
L

-9
9

8

A
S

C
(“X

”)
(u

sin
g

 A
S

C
II co

d
e)

X
$

=
“

’’
IF

 P
E

E
K

(-1
6

3
8

4
)

>
1
2
7

 T
H

E
N

 G
E

T
 X

$

1

C
H

R
$(IN

T
(R

N
D

(1)
*

2
6

+
6

5
))

R
N

D
(1

)*
N

+
1

R
N

D
(l)

A
p
p
le

M
ID

$(A
$,N

1,N
2)

R
IG

H
T

$(A
$,N

)

L
E

F
T

$(A
$,N

)

P
R

IN
T

 C
H

R
$(25)

P
R

IN
T

 C
H

R
$(24)

P
R

IN
T

 C
H

R
$(26)

P
R

IN
T

 C
H

R
$(27)

A
S

C
(“X

")
(u

sin
g

 A
S

C
II co

d
e)

IN
K

E
Y

$

S
IC

O

D

T
CD

R
N

D
(N

)

R
N

D
(O

)

T
R

S
-8

0

A
$(N

1 T
O

 N
2)

I?
2
-9
o

A
$(1 T

O
 N

)

2

3
a

P
R

IN
T

 C
H

R
$(8)

P
R

IN
T

 C
H

R
$(10)

P
R

IN
T

 C
H

R
$(11)

C
O

D
E

(“X
”)

(u
sin

g
 A

S
C

II co
d

e)

IN
K

E
Y

S

ST
D

o

|
D

+

R
N

D
*N

+
1

R
N

D

Z
X

 S
p

e
c
tru

m

A
$(N

1 T
O

N
2

)

A
$

(N
T

O

)

A
$(1 T

O
 N

)

P
R

IN
T

 C
H

R
$(115)

P
R

IN
T

 C
H

R
$(114)

P
R

IN
T

 C
H

R
$(113)

P
R

IN
T

 C
H

R
$(112)

C
O

D
E

(“X
”)

(u
sin

g
 Z

X
81 co

d
e)

IN
K

E
Y

S

O

O

1
1
0

+

3

R
N

D
*
N

+
1

R
N

D

Z
X

8
1

C
o

n
v

ersio
n

 c
h
a
rt

T
h
is q

u
ick

 re
fe

re
n
c
e

 c
h
a
rt sh

o
w

s so
m

e o
f th

e
 v

a
ria

tio
n
s in

 th
e

 B
A

S
IC

 u
se

d
 b

y
 d

ifferen
t co

m
p

u
ters. It d

o
e
sn

o
t

in
clu

d
e in

stru
c
tio

n
s fo

r g
ra

p
h

ic
s, so

u
n

d
 o

r co
lo

u
r a

s th
e
se

 v
a
ry

 so
 en

o
rm

o
u

sly
 fro

m
 m

a
c
h
in

e
 to

 m
ach

in
e.

N
o

te also
 th

a
t alth

o
u

g
h

 m
o

st co
m

p
u

ters (ex
cep

t th
e

 B
B

C
) u

se P
E

E
K

 a
n
d

 P
O

K
E

, th
e
y

 d
o

 n
o
t u

se
 th

e
 sam

e
sy

stem
 o

f m
em

o
ry

 a
d

d
re

sse
s, so

 th
e

 n
u

m
b

e
rs u

se
d

 w
ith

 P
E

E
K

 an
d

 P
O

K
E

 m
u

st b
e c

h
a
n

g
e
d

 fo
r e

a
c
h
c
o
m

p
u
te

r.

Contents

100 Starship Takeoff

102 Intergalactic Games

104 Evil Alien

106 Beat the Bug Eyes

108 Moonlander

110 Monsters of Galacticon

112 Alien Snipers

114 Asteroid Belt

116 Trip into the Future

118 Death Valley

120 Space Mines

122 Space Rescue

126 Touchdown: TRS-80 version

127 Touchdown: VIC20 version

128 Touchdown: ZX81 version

129 Touchdown: ZX Spectrum version

130 Touchdown: BBC version

131 Touchdown: Apple version

132 Adding to the programs

134 Writing your own programs

136 Summary of BASIC

141 PuzzleAnswers

Illustrated by
Martin Newton, Tony Baskeyfield, Graham Round, Jim Bamber, Mark

Duffin and John Bolton

Designed by
Graham Round and Roger Priddy

Beat the Bug Eyes program by Bob Merry

Starship Takeoff program by Richard Nash

(&.' & o
r-J-:

This section of the book contains simple

games programs to play on a

microcomputer. They are written for use

on ZX81, ZX Spectrum, BBC, VIC 20, TRS-

80 and Pet and Apple micros, and many

are short enough to fit into the ZX8 l’s IK

of memory.

Most micros use the language BASIC,

but they all have their own variations or

dialects. In this section of the book, the

main listing for each program works on

the ZX81 and lines which need changing

for the other computers are marked with

symbols and printed underneath. The

fact that the programs are written for

several micros means that they do not

make full use of each one’s facilities. You

could try finding ways of making the

programs shorter and neater for your

micro.

For each game, there are ideas for

changing and adding to the programs

and towards the back of the book you

will find tips and hints on writing games

of your own. If you want to adapt

programs from magazines and other

books to run on your micro, there is a

conversion chart to help you on page 96.

Typing in the programs

Lines which need changing for

computers other than ZX81 are marked

with these symbols:

A VIC and Pet

★ BBC and Acorn Electron

■ TRS-80

• Apple

s ZX Spectrum

Every time you see the symbol for the

micro you are using, look below for the

corresponding line number with the

same symbol and type that in instead.

VIC 20 versions of all except the graphics program should work on

Pet computers.

Points to remember

1 Type the lines exactly as they are printed

including all punctuation and spaces.

2 Press RETURN, NEWLINE or ENTER

key at the end of each program line.

3 Check each line as you go.

4 Make sure you don’t miss out a line or

confuse one with another. A piece of paper

or a ruler is useful to mark your place in

the listing.

5 Look out for the symbols and make sure

you use the correct lines for your

computer.

6 If you are using a ZX81 or ZX Spectrum,

remember not to type the program

instructions letter by letter but to use the

special key for each instruction instead.

You may find it easier to get someone to

read the program out to you while you

type it in. Don’t forget to explain that they

must read every comma, fullstop, bracket

and space and differentiate between letter

“O” and zero, FOR and 4, and TO and 2.

Debugging programs

When you have typed

in the program, check

your manual to find out

how to display it on the

screen. (Usually you

type LIST followed by

the line numbers of the

section you want t o

see.)

Check you have
typed everything
correctly. It is easy to
make mistakes, so
expect to find some. Use
your manual to find out
how to make changes to
the program once it is
typed in. If in doubt, you
can always type the line
again. All the computers
will replace an existing
line with a new one with
the same number.

Here is a checklist of common
mistakes to look out for:
1 Line missed out

2 Line wrongly numbered

3 The beginning of one line joined onto
the end of another.

4 Brackets, commas, colons, semi¬
colons, fullstops or spaces missed out,
especially in long, complicated lines.
Watch for double brackets in particular.
5 Wrong line used for your computer.
6 Letter “O” confused with zero.

7 Wrong numbers used, e.g. extra zeros
included.

Playing the games

To start the game you must type RUN. In
some games things happen very quickly,
so make sure you have read the
instructions and know what you are
supposed to do.

It is quite likely that the program still

nd either won't rui^k

■on’t work properly,

mputer will give you

h you can look up in
ry help you find the
t always. List the
check it carefully V

has a mistake in it and either won’t n
at all or the game won’t \
Sometimes your computer will give you
an error code which you can look up in
the manual. This may help you find the
mistake, though not always. I
program again and check it carefully
against the book.

When the game is over, the computer
will usually say something like BREAK IN
LINE 200. To play again, you have to type
RUN.

Experimenting with the games

There are suggestions for changing and
adding to the programs throughout this
section of the book, but don’t be afraid to
experiment with changes of your own.
You can’t damage the computer and you
can always change back to the original if
the changes don’t work.

You will probably find you want to
adjust the speed of some games, *
especially after you have played them a
number of times. You will find out which
line to change on each program page.

Wherever you see
PRINT, you can
change the message in/
quotes that follows it to
whatever you like.
Also, unless you have
ZX81 with only IK, you
can add extra
messages.
Type a line number (say 105 if you want
to add a message between lines 100 and
110), then type PRINT, then your
message inside quotes.

If your computer can make colours
and sounds, you could use your manual
to find out how they work arid try adding
them to the games in this book.

Starship Takeoff
You are a starship captain. You have crashed your ship on a

strange planet and must take off again quickly in the alien

ship you have captured. The shipis computer tells you the

gravity on the planet. You must guess the force required fora

successful take off. If you guess too low, the ship will not lift

off the ground. If you guess too high, the ship’s fail-safe

mechanism comes into operation to prevent it being burnt

up. If you are still on the planet after ten tries, the aliens will

20 PRINT "STARSHIP TAKE-OFF"

★■A«30 LET G=INT<RND*20+1)
★■A«40 LET W=INT<RND*40+1)

50 LET R=G*W

How the program works

— Clears the screen.

;s the number in G

60 PRINT "GRAVITY= ";G- :s GRAVITY and number

70 PRINT

80 FOR C=

'TYPE IN FORCE"

. TO 10-

90 INPUT F

inG.

- Asks you for a number.

- This begins a loop which tells
the computer to repeat the next
section 10 times, to give you
10 goes.

irinF.

Compares number in F with —1 C
lOO IF F>R THEN PRINT "TOO HIGH"; number in R and prints
110 IF F<R THEN PRINT "TOO LOW"; I— appropriate message or
120 IF F=R THEN GOTO 190 J jumps to 190.

130 IF COlO THEN PRINT

140 NEXT C -

150 PRINT
160 PRINT "YOU FAILED -"
170 PRINT "THE ALIENS GOT YOU
180 STOP
190 PRINT "GOOD TAKE OFF"

The above listing will work on a ZX81. For
other computers, make the changes below.

•lO HOME
AlO PRINT CHR*(147)

★A#30 LET G=INT<RND<1)*20)
■30 LET G=INT(RND(0)*20)

★a*40 LET W=INT(RND <1)*40)
■40 LET W=INT(RND(O)*40)

TRY AGA IN"-Prints if you’ve had less
than 10 goes without a correct

Ind of loop. Goes back to 80
for another turn.

- Prints after 10 unsuccessful
goes.

Howto make the game harder

You can change the program to give
you less than 10 goes. Do this by
altering the last number in line 80 and
the number in line 130. (They must be
the same.)

Puzzle corner

You could change the range of possible
forces. See if you can work out how.

Seepage 98 for meaning of *ab^

Intergalactic Games
There is fierce competition among the
world’s TV companies for exclusive
coverage of the First Intergalactic Games.
Everything depends on which company
wins the race to put a satellite into orbit at
the right height.

You are the Engineer in charge of the
launch for New Century TV. The crucial
decisions about the angle and speed of the
launching rocket rests on yourshoulders.
Can you do it?

How the program works

10 PRINT "INTERGALACTIC GAMES" “1 Chooses the height to which
★■*•20 LET H=INT(RND*100+1) L— you must launch your

30 PRINT "YOU MUST LAUNCH A SATELLITE "I satellite, puts it in Hand
40 PRINT "TO A HEIGHT OF ";H J printsit.

50 FOR G=1 TO B ■ . .. 1 - ■ Beginning of loop to give you
— 8 goes.

60 PRINT "ENTER ANGLE (0-90)" -Asks you for an angle and
70 INPUT A J putsitinA.

80 PRINT "ENTER SPEED (0-40000) I
90 INPUT V J

lOO LET A=A-ATN(H/3>*180/3.14159 -

Asks you for a speed and puts
itinV.

Uses H to calculate what the
angle should be and
subtracts this from your
guess to find out how close
you were.

110 LET V=V-3000*SQR(H+1/H) ■Works out what the speed
should be and subtracts it
from your guess.

120

130
140
150
160

170

180
190
200
210
220
230

IF ABS (A) <2 AND ABS(V)<100 THEN GOTO 200-Checksif
you were close enough to

_ win and if so jumps to 210.
IF A<—2 THEN PRINT "TOO SHALLOW'']
IF A>2 THEN PRINT "TOO STEEP" -Prints an appropriate
IF VC-lOO THEN PRINT "TOO SLOW" comment to help you with
IF V>100 THEN PRINT "TOO FAST" I your next go.

NEXT G -

PRINT "YOU’VE FAILED
PRINT "YOU’RE FIRED"
STOP
PRINT "YOU’VE DONE IT
PRINT "NCTV WINS-THANKS TO YOU'
STOP 0—

Goes back for another go.

Prints after 8 unsuccessful
goes.

Prints if you win.

The above listing will work on a ZX81. For
other computers, make the changes below.

■20 LET H=INT(RND(0)*100+1)
★*•20 LET H=INT(RND(1)*100+1)

102

Adding to the program

These three extra lines will make the
computer give you bonus points
depending on how quickly you make a
successful launch.

222 LET B=INT<1000/6)
225 PRINT "YOU'VE EARNED A"
227 PRINT "BONUS OF ";B;" CREDITS

Puzzle corner

Can you change the program so that, if
you win, it automatically goes back for
another game, adding the bonus you’ve
already earned to any new bonus?
(Hint: you need to change two lines
and add one.)

See how long you can play before
NCTV fires you.

Evil Alien Somewhere beneath you, in deepest, blackest space,
lurks Elron, the Evil Alien. You have managed

to deactivate all but his short-range weapons
but he can still make his ship invisible.

You know he is somewhere within the
three-dimensional grid you can see

on your ship’s screen (see
below), but where?

You have four space bombs.
Each one can be exploded at

a position in the grid
specified by three numbers

between 0 and 9, which
A your computer will ask

you for. Can you blast
the Evil Elron out

°f space before he
i creeps up and
a,, ” captures you?

▲•5 CLS
lO PRINT "EVIL ALIEN'
20 LET S=10

★■A*40 LET X=INT(RNDfS)
★■a«50 LET Y=INT(RNDtS)
★■A*60 LET D=INT(RND*S)

70 FOR 1=1 TO

80 PRINT "X POSITION
85 INPUT XI
90 PRINT "Y POSITION (O TO 9)?"
lOO INPUT Y1
110 PRINT "DISTANCE (O TO 9>?"
120 INPUT D1

130 IF X=X1 AND Y=Y1 AND D=D1 THEN GOTO 300

140 PRINT "SHOT WAS
150 IF Y1>Y THEN PRINT "NORTH";
160 IF Y1<Y THEN PRINT "SOUTH";
170 IF X1>X THEN PRINT "EAST”;
180 IF X1<X THEN PRINT "WEST";
190 PRINT
200 IF D1>D THEN PRINT "TOO FAR"
210 IF D1<D THEN PRINT

220 NEXT I

230 PRINT "YOUR TIME HAS RUN OUT !!"— Prints if you’ve used up all
240 STOP your goes.

300 PRINT "*BOOM* YOU GOT HIM!"-Prints ifyou guessed right.
310 STOP

The above listing will work on a ZX81. For
other computers, make the changes below.

•5 HOME
5 PRINT CHR(147>

★*•40 LET X=INT(RND(1)*S)
■40 LET X=INT(RND(0)*S)

★a*50 LET Y=INT(RND(1)*S)
■50 LET Y=INT(RND<0)*S)

★a«60 LET D=INT(RNDtl)*S)
■60 LET D=INT(RND(0)*S>

Puzzle corner

Can you work out how to change the
program so that the computer asks you
for a difficulty number which it can put
into S instead of S being fixed? (Tip: limit
the value of S to between 6 and 30 and
use INT(S/3) for the value of G in line

See page 98 for meaning of m

it

Moonlander
You are at the controls of a lunar module which is taking a small team of astronauts

down to the moon’s surface. In order to land safely you must slow down your descent

but that takes fuel and you have only a limited supply.

Your computer will tell you your starting height, speed and fuel supply and ask

how much fuel you wish to bum. It will then work out your new height and speed. A

bum of 5 will keep your speed constant. A higher number will reduce it. Try to have

your speed as close to zero as you can when you land. Can you land safely on the

moon?

▲•lO CLS
20 PRINT "MOONLANDER"
30 LET T=0
40 LET H=500
50 LET V=50
60 LET F=120
70 PRINT "TIME";T,"HEIGHT";
SO PRINT "VEL.";V,"FUEL";F

90 IF F=0 THEN GOTO 140-

lOO PRINT "BURN? <0-30)" ”|
HO INPUT B
120 IF B<0 THEN LET B=0 I—
130 IF B>30 THEN LET B=30j
140 IF B>F THEN LET B=F J
150 LET Vl=V-B+5-

160 LET F=F—B ————

170 IF (V1+V)/2>=H THEN GOTO 220

180 LET H=H-<Vl+V>/2-

190 LET T=T+1-

200 LET V=V1-

210 GOTO 70-

220 LET Vl=V+(5-B>*H/V “
230 IF VI>5 THEN PRINT "YOU CRASHED-ALL DEAD-
240 IF VI>1 AND Vl<=5 THEN PRINT "OK-BUT SOME INJURIES"
250 IF V1<=1 THEN PRINT "GOOD LANDING." _
260 STOP

The above listing will work on a ZX81. For
other computers, make the changes below.

•lO HOME
410 PRINT CHR*<147>

108 See page 98 for meaning of 9a

Adding to the program

If you add the following lines, you will see a star
printed each go. The distance of the star from
the left-hand side of the screen corresponds to
your height above the moon.

85 FOR 1=2 TO H/500*nn
B6 PRINT "
87 NEXT I
88 PRINT

Replace nn with the width of your screen.

How the program works
Changes to try

Try changing the values of H, V and F in lines 40
to 60 and see what happens. Sets the starting values for

time, height, speed and fuel
and prints them.

Puzzle corner If you have no fuel left,
computer jumps down the
program, bypassing the
section which asks you for a
bum. It then prints a running
commentary of your progress
as you approach the moon’s
surface.

You could make the game easier by increasing
the maximum speed allowed for a safe landing.
How would you change the program to do this?

Gets a number from you for

see how good a landing you
made.

Calculates your new height.

Increases time by 1.

Puts your new velocity into V
so it will print in line 80 for
your next go.

Goes back to beginning of
loop for next go.

Calculates your speed on
touch-down and checks what
kind of landing it gives you.

Monsters of Galacticon
Landing on Galacticon was easy -
but no-one warned you that some of
the nastiest monsters in the known
Universe are to be found there.

As each monster threatens, you
must choose one of your weapons -
a ray gun, a trypton blaster or a
sword laser - to use against it. Can
you make the right choices? If so,
you may live to conquer Galacticon.

How the
program works

20 DIM M*<4>

30 LET N=4 —

Sets up a storage place (an
“array”) labelled M$ with 4
compartments in it - M$(l),
M$(2), M$(3) and M$(4) - one
for each monster name.

■ Sets the number of monsters
to 4.

40 LET M=5 -

50 LET M*(l>="SULFACIDaR'
60 LET M*(2)="FLAMGONDAR'
70 LET M*<3)="BALNOLOTIN'
80 LET M$(4)=”GOLANDOR“

90 FOR 1=1 TO N “
★■4*100 LET A=INT(RND*N+1>
★■4*110 LET B=INT(RND4N+1)

120 LET T*=M*(A>
130 LET M*(A)=M*(B>
140 LET M*(B)=T*
150 NEXT I

160 FOR T=1 TO 8

4*170 CLS

★■4*180 LET R=INT(RND*N+1)
190 PRINT "MONSTER COMING...
200 PRINT "IT’S A ";M*<R>

210 PRINT "WHICH WEAPON
220 INPUT R*

$★■4*230 LET W=CODE(R*>-54+R
■4240 LET W=W-3*<W>3)-3*(W>6)

250 IF W=2 THEN GOTO 300

Sets the number of people in
your group to 5.

Puts the 4 monster names into
the array.

These lines shuffle the
monsters up. Computer loops
round N times. Each loop, it
selects two numbers between
1 and N and switches the
names in the compartments
with those numbers. T$ is a
temporary string used during
the switch round process.

Beginning of loop for 8 turns.

Clears screen

Chooses one of the monsters
and prints its name.

The computer uses the values
in R and R$ to work out a
weapon number, W, which
will be 1,2 or 3.

If W is 2, the computer jumps
to 300 to say you’ve killed the
monster.

1101-
See page 98 for meaning o/*4« ★s

•g
l
A

ih KNU.J.'t IHtN bUlU SOU
PRINT "YQU ANGERED THE ";M*<R);"AND
PRINT "KILLED ONE OF YOUR GROUP"

360
370

380
390
400
410
420
430
440
450

FOR 1 = 1 TO 201_
NEXT I J
NEXT T
PRINT "YOU HAVE SURVIVED T0"|
PRINT "CONQUER GALACTICON'
STOP
PRINT "YOU’RE ALL DEAD1
STOP

"J

Checks if you still have some
people left. If you haven’t it

• jumps to 440 to tell you.

Delay loop to keep messages
on screen long enough for
youto readthem.

■ Goes back for next turn.

Prints if you still have people
left after all your turns.

The above listing will work on a ZX81. For
other computers, make the changes below.

■100 LET A=INT(RND(0)*N+1)
★A#100 LET A= I NT (RND < 1) *N+1)

■110 LET B=INT<RND(0)*N+1)
★a»110 LET B=INT(RND(1)*N+1)

#170 HOME
A 170 PRINT CHR*(147)
■180 LET R=INT(RND(0)*N+1)

★A#180 LET R=INT(RND(1)*N+1)
★ ■4«230 LET W=ASC(R*)-81+R

S230 LET W= CODE (R*) —81+R
★■a240 LET W=W+3*<W>3)+3*(W>6)
★ a«330 IF RND(1) > . 4 THEN GOTO 380

Alien Snipers

|g? You are the captain of an interstellar cruiser

which, through damage to one of its hyperspace

_motors, has strayed into a forbidden area. Alien sniper .

1 ships are attacking you and, to make things worse, are

using a jamming device on your radar which makes it give

false readings. Luckily your computer knows a code which you

-can use to work out the correct locations of the enemy ships. But you

must be quick - they don’t stay in one place for long!

Your computer will print a letter (the false enemy location) and a code

number. You must think through the alphabet by that number of letters and

type in the letter you get to. E.g. for M 4, you must type Q, and for C 2, you must

type E and so on. Typing in a letter automatically triggers off your laser

gun, so if your letter is correct you’ll score a hit. You can choose the

difficulty of each game. This is a number between 1 and 10 and is the

maximum number of letters to be added on each time.

You get 10 alien snipers each game. See how many you can hit.

See page 98 for meaning of •-

Asteroid Belt
You are on a trip through the Asteroid Belt. To avoid crashing into the
asteroids, you must destroy them and the force required for doing this
depends on their size.

Asteroids appear on your computer screen as groups of stars. To
destroy them you must press the number key corresponding to the
number of stars. Be prepared - asteroids come at you thick and fast.

How the program works

Sets the opening score to

Starts a loop which gives 10
goes.

Chooses a number
for the position of the
asteroid across the screen
Puts this in A.

%

★■A«60 LET D=INT(RND*12+1)

★ ■A«70 LET N=INT(RND*9+1>

80
90
100

FOR 1=1 TO D
PRINT I

NEXT I

■ Chooses a number (1 to 12)
for the position of the
asteroid down the screen and
puts it in D.

■ Chooses a number (1 to 9) for
the number of stars in the
asteroid.

• Moves the cursor D lines
down the screen.

,
110
120
130
140
150
160

FOR 1=1 TO N
IF IOl AND 104 AND 107 THEN SOTO 150
PRINT
PRINT TAB(A);
PRINT
NEXT I _

-Loops round N times
printing a star each
time in the appropriate
position.

PRINT

★■a»180 FOR 1 = 1 TO 10
★A#190 LET Q=VAL(,,0" + INKEY*>

200 IF QOO THEN SOTO 240
★210 NEXT I

220 PRINT "CRASHED INTO ASTEROID"
230 GOTO 290

240 IF QON THEN GOTO 270

Loops round to see if you are
pressing a key and jumps to
240 if you are.

Prints if you run out of time.

Checks if your number is the
same as N and jumps to 270 if
it isn’t.

280 IF Q>N THEN PRINT "TOO STRONG"

TO 50 "1_ ■A#290 FOR 1=
300 NEXT I

OUT OF lO"

Delay loop to keep messages
on screen long enough for
youto read them.

Goes back for another go.

Prints your score after 10
goes.

The above listing will work on a ZX81. For
other computers, make the changes below.

•40 HOME
MO PRINT CHR$(147)
■50 LET A=INT(RND<0>*18+1)

★A«50 LET A=INT(RND(1)*18+1)
■60 LET D=INT<RND(0)*12+1)

★A*60 LET D=INT(RND<1)*12+1)
■70 LET N=INT(RND(0)*9+1)

★A«70 LET N=INT(RND(1)*9+1)
• 175 £2=0

How the program works

See page 98 for meaning of • a ■ ★

140 PRINT "YOU TOOK T1;"YEARS
150 PRINT "AND ARRIVED ";T2;"YEARS"
160 PRINT "IN THE FUTURE."

170 IF T1>50 THEN GOTO 210-

■>

- Checks if yon took longer
than your lifetime (50 years).
Jumps to line 210 if yon did.

180 IF ABS <T—T2)<=5 THEN PRINT "YOU ARRIVED ON
190 IF ABS<T—T2)>5 THEN PRINT "NOT EVEN CLOSE"
200 STOP
210 PRINT "YOU DIED ON THE WAY"
220 STOP

The above listing will work on a ZX81. For
other computers, make the changes below.

•10 HOME
AlO PRINT CHR*<147>
■30 LET T=INT(RND(0)*100+25)

★a«30 LET T=INT(RND(1)*100+25)

Puzzle corner
Can you work out how to change the
program to do the following things?

1) Give a wider range of years which
must elapse before you return to Earth.
2) Increase the accuracy required from
within 5 years to within 2 years.
3) Shorten or lengthen your lifetime.

Death Valley
There is only one way to escape the forces of the evil Dissectitrons. You
will have to steel every nerve and fly your single-seater Speed Dart
along the jagged, bottomless ravine known as Death Valley.

Your computer will ask you for the width of the valley. Try 15* first and
then work your way down - 8 is quite difficult. Steer your Speed Dart by
pressing Q to go left and P to go right, and see if you can make itsafely
through Death Valley.
*If you are using a VIC 20, then use widths of 6 to 10.

30 LET M=200'

40 PRINT "WIDTH?”
50 INPUT W
60 LET W=INT(W/2)

A 70 LET L=:
80 LET Y=l
90 LET

★■A#100

110

Checks if yon have crashed
into a wall. Jumps to 370 to
tell yon if yon have.

Increases number of goes
used by one.

Goes back for another turn if
yon have had less than M goes.

Prints if you have had M goes
and no crash.

Sub-routine for moving the
cursor to the appropriate
places for printing 1 and *.

The above listing will work on a ZX81. For
other computers, make the changes below.

A70 LET L=4
■ 100 LET D=INT(RND<0)*3—1)

★a#100 LET D=INT<RND<1)*3-1>
S*BA«145

•235 I*=“”

Space Mines You are the newly elected leader of a mining
colony on the Planet Astron. All decisions
concerning the sale of ore to Intergalactic
Traders, food purchase and sale and purchase of
mines are made by you. Can you keep the people
satisfied and survive your 10 years in office or
will life in the colony end in disaster under your
rule?

★■▲•

10
20
30
40

,50

LET L=INT(RND*3-*5)
LET P=INT(RND*60+40)
LET M=INT(RND*50+10)*P
LET FP=INT(RND*40+80)
LET CE=INT(RND*40+80)

Howthe program works
These lines decide the number of
mines (L), number of people (P),

- amount of money (M), price of
food (FP) and amount of ore
produced per mine (CE) for the
start of the game.

60 LET C=0 Sets the amount of ore in
storage to zero for start.

LET

LET

LET

S= 1 . Sets the satisfaction factor to 1.

Y= 1 Sets the year number to 1.

LP= I NT (RND *2000+2000)-Selects buying/selling price
for mines.

★■▲•100
▲•110

120
130
140
150
160
170
180
170
200
210
220
230

240
250
260

270

LET CP= I NT (RND* 12+7)-Selects
CLS
PRINT "YEAR";Y
PRINT
PRINT "THERE ARE ";P;” PEOPLE IN THE COLONY-
PRINT "YOU HAVE ";L;" MINES,AND *"M
PRINT "SATISFACTION FACTOR ";S
PRINT
PRINT "YOUR MINES PRODUCED ";CE;" TONS EACH"
LET C=C+CE*L
PRINT "ORE IN STORE=";C;" TONS"
PRINT "SELLINO"
PRINT "ORE SELLING PRICE=";CP
PRINT "MINE SELLING PRICE=";LP;"/MINE"

selling price for ore.

Prints current state
— of affairs in the

colony.

PRINT "HOW MUCH ORE TO SELL?" ”1 Asks how much ore you want
INPUT CS h to sell, puts it CS and checks
IF CS<0 OR CS>C THEN GOTO 240 _] you’ve got that much in store.

LET C=C—CS Takes amount sold away
from amount in store.

280 LET M=M+CS*CP-

290 PRINT "HOW MANY
300 INPUT LS
310 IF LS<0 OR LS>L
320 LET L=L-LS
330 LET M=M+LS*LP

340 PRINT
350 PRINT "YOU HAVE
360 PRINT

370 PRINT "BUYING"
380 PRINT "HOW MUCH
390 INPUT FB

MINES TO SELL?"

THEN GOTO 290

■ Works out how much ore sold
is worth and adds this to your
money supply.

■ Does the same process for
selling mines.

TO SPEND ON FOOD

—Prints your new money supply.

~1 Asks how
(APPR. tlOO EA.) "[—muchyou

—1 want to
spend on food and puts this in FB.

400

410

IF FB<0 OR FB>M THEN GOTO 380

LET M=M—FB —————

Checks you have enough
money to pay.

Adjusts your money supply.
120

) LET M=M-LB*LP-

490 IF S<. 6 THEN GOTO 660-

★■A#500 IF S>1.1 THEN LET CE=CE+INT(RND*20+1>

★■A«5iO IF S<.9 THEN LET CE=CE-INT(RND*20+1)-

— Checks on value of
satisfaction factor. If this is
very low, computer jumps to
660 to end the game.

— If S is high then amount
produced per mine is
increased.

520 IF P/L<lO THEN GOTO 680-

★■A»530 IF S>1.1 THEN LET P=P+INT<RND*10+1>-

★■A«540 IF S<.9 THEN LET P=P-INT(RND*10+1)—

550 IF P<30 THEN GOTO 700-

★ ■A#560 IF RND>. Ol THEN GOTO 5«»0
570 PRINT "RADIOACTIVE LEAK_MANY DIE1
580 LET P=INT(P/2)
590 IF CE<150 THEN GOTO 620
600 PRINT "MARKET GLUT - PRICE DROPS'
610 LET CE=INT(CE/2)

-]-

620 LET Y=Y+1 -

630 IF Y<1
640 PRINT
650 STOP
660 PRINT "THE PEOPLE REVOLTED"
670 STOP
680 PRINT "YOU’VE OVERWORKED EVERYONE"
690 STOP
700 PRINT "NOT ENOUGH PEOPLE LEFT"
710 STOP

The above listing will work on a ZX81. For
other computers, make the changes below.

•110 HOME
A110 PRINT CHR«(147)

★a#10, 20, 30. 40,50, 90, lOO, 500, 510, 530,540, 560
change RND to RND <1)

■10,20,30,40,50,90,100, 500, 510, 530,540,560
change RND to RND (O)

- If there are less than 10
people per mine, game is over.

- More people arrive if S is high.

- People leave if S is low.

If there are less than 30
people, game is over.

Introduces small chance of
half the people being killed.

If the amount produced per
mine is very high, ore price is
halved.

Year number increased by 1
and if it is less than 11,
computer goes back to 90 for

^another go.

Prints if the computer
reaches this stage in the
program on your 10th go.

’uzzle corner

Can you make the
computer ask if you would
like another game and add

the money you have ended
up with to the new money
supply for the next game?

See page 98 for m eaning of • a ■ ★
121

Space Rescue

You must make an urgent trip across the spiral arm of the Galaxy to a

developing planet which is in need of medical supplies. The trip involves

such huge distances that for most of it you will be in a deep sleep, but before

this you must program the ship for the journey. The computer will ask how

much energy you want to allocate to the engines, life support system and

shields and then put you to sleep.

When you wake up, it will give you a report on what happened during the

trip and, if all went well, you will be orbiting the planet. You must now

allocate your remaining energy to the landing boosters and shields in order

to make a good landing on the planet.

* If you accomplish the mission safely, you stand a good chance of being

promoted to Space Admiral. Good luck!

AtlO CLS

20 PRINT "SPACE RESCUE"

30 PRINT

40 PRINT "DO YOU WANT INSTRUCT I ONS*> "

50 INPUT I%

★ ■*•6O IF I<M1>="Y" THEN GOSUB lOOO

★■*•70 LET D=INT(RND*800+101)

■•80 LET E=INT<RND*400+401>

90 LET T=INT(D/SQR(E/5)+.5)

lOO PRINT "THE PLANET IS ";D;" UNITS AWAY"

HO PRINT "YOU HAVE ";E;" UNITS OF ENERGY"

120 PRINT "AND A TIME LIMIT OF ";T;" DAYS"

130 PRINT

140 PRINT "ENERGY DISTRIBUTION:"

150 PRINT "TO ENGINES?"

160 INPUT P

170 PRINT "TO LIFE SUPPORT?"

180 INPUT L

190 PRINT "TO SHIELDS?"

200 INPUT S

210 IF P+L+S>E THEN GOTO 140

220 LET X=E—P—L—S

230 LET V=INT(SQR(P)>

240 LET T1=INT(D/V)

**250 CLS

260 PRINT "YOUR VELOCITY IS ";V

270 PRINT "YOU HAVE AN ETA OF ";T1;" DAYS"

280 PRINT

★■*•290 FOR 1=1 TO INT(RND*5+6>

★■*•300 IF RND>.5 THEN GOTO 430

★■*•310 GOTO 320+INT<RND*4>*30 • *" ' V

122 320 PRINT "ASTEROID STORM - SHIELDS DAMAGED"

★■*•330 LET S=S—20-INT<RND*40+1)

340 GOTO 430

350 PRINT "COMPUTER BREAKDOWN - DELAY IN REPAIRING"

★■*•360 LET D=D+INT(RND*20+1)

370 GOTO 430

380 PRINT "ENGINE TROUBLE - MUST SLOW DOWN"

390 LET V=V-.5

400 GOTO 430

410 PRINT "X-RAY DAMAGE - LIFE SUPPORT DAMAGED"

420 LET L=L-20-INT(RND*40+l)

★■*•430 FOR J=1 TO 50

440 NEXT J ■
450 NEXT I

460 LET T1=INT(D/V) /

*•470 CLS

480 PRINT "ARRIVED IN ";T1;" DAYS"

.490 IF SCO THEN PRINT "SHIELDS DESTROYED"

495 IF SCO THEN PRINT "YOU WERE BLOWN UP" '

500 IF LC=0 THEN PRINT "LIFE SUPPORT INACTIVE"

505 IF LC=0 THEN PRINT "YOU7 RE DEAD"

510 IF VC=0 THEN PRINT "ENGINES ARE NON-FUNCTIONAL"

520 IF T1>T THEN PRINT "YOU TOOK TOO LONG ABOUT IT"

530 IF SCO OR LC=0 OR VC=0 OR T1>T THEN STOP

★■*•540 LET G=INT(RND*10+5)

550 LET G*="HIGH"

560 IF GC12 THEN LET G*="MEDIUM"

570 IF G<8 THEN LET G*="LOW"

★■*•580 LET A=INT(RND*10+5)

590 LET A*="HIGH" _ ,

600 IF AC 12 THEN LET A*="MEDIUM"

610 IF AC8 THEN LET A*="LOW"

620 PRINT r

630 PRINT "YOU ARE NOW ORBITING THE PLANET" •

640 PRINT "SURPLUS ENERGY=r‘; X

650 PRINT "GRAVITY IS "; G*

660 PRINT "ATMOSPHERE IS ";A*

670 PRINT

680 PRINT "HOW MUCH ENERGY TO BOOSTERS?"

690 INPUT B

700 PRINT "HOW MUCH ENERGY TO HEAT SHIELDS?"

710 INPUT S

720 IF B+S>X THEN GOTO 680

*•730 CLS

- 740 IF B>=G*10 THEN GOTO 770

Program con tin ued on next page.

V> Space Rescue continued

•; ‘.i - •
750 PRINT "YOU MADE A NEW CRATER" .

' 760 GOTO 840

'■770 IF S>=A*10 THEN GOTO 800

780 PRINT "YOU MADE A WONDERFUL SHOOTING STAR"

790 GOTO 840

• 800 PRINT "YOU LANDED SUCCESSFULLY - WELL DONE

810 IF X—S—B>25 THEN GOTO 840

. 820 PRINT "PITY YOU DON'T HAVE ENOUGH"

830 PRINT "ENERGY TO OPEN THE DOOR"

840 STOP

PRINT

PRINT "YOU ARE ABOUT TO EMBARK ON A"

PRINT "MISSION TO A DISTANT PLANET"

PRINT "IN URGENT NEED OF MEDICAL"

PRINT "SUPPLIES. YOU MUST FIRST READY"

PRINT "YOUR SHIP FOR THE TRIP BY"

PRINT "ALLOCATING SOME OF THE SHIP'S"

PRINT "ENERGY TO THE ENGINES,SHIELDS"

PRINT "AND LIFE-SUPPORT. YOU ARE"

PRINT "THEN PUT TO SLEEP FOR THE MAIN"

PRINT "PART OF THE TRIP, AFTER WHICH"

PRINT "YOU WILL GET A REPORT OF THE"

PRINT "EVENTS ON THE WAY. YOU MUST"

PRINT "THEN LAND ON THE PLANET."

PRINT "PRESS ANY KEY"

IF INKEY*="" THEN GOTO 1150

CLS

RETURN I

The above listing will work on a ZX81. For
other computers, make the changes below.

■all RND to RND(O) .

*A#al 1 RND to RND <1)

•10,250,470,730,1160 HOME

10,250,470,730,1160 PRINT CHR(147)

★■*•60 IF LEFT $(I$,1)="Y" THEN GOSUB lOOO

■•310 ON INT<RND*4+1> GOTO 320,350,380,410

'**•430 FOR J=1 TO 500

★430 FOR J=1 TO lOOO

★1150 I=GET * • '

• 1150 GET I*

■*1150 GET I* : IF I$="" THEN GOTO 1150

lOOO

1010

1020

1030

1040

i 1050

/ 1060

$ - 1070

V . 1080

1090

1100

1110

1120

1130

1140

★■>.•1150

*•1160

1170

124.

Adding to the game

This game is really made up of two parts. In the first part you set off on your
space journey with the aim of orbiting the planet and in the second you
attempt to land on the planet. You could perhaps try adding a third part in
which you make the treacherous crossing from the landing site to the

Intergalactic Red Cross H.Q.

125

Touchdown

This game is different from the others in this book because it uses graphics.

As the computers vary so much in the way their graphics work, there is a

separate program for each one. Read the instructions on this page for how

to play the game and then look through the pages that follow for the version

for your computer.

Howto play Touchdown

Ace space pilot, Captain Flash, is sitting next to you as you take the final

part of your Advanced Spacecraft Handling Test (Part III). Your

lightweight, two-man landing craft is rapidly approaching the Moon’s

surface. Your velocity must be almost zero as you touch down. Deftly you

control the thrust, pressing A to increase it and D to decrease it *, watching

your progress on the screen all the time. If you use too much thrust you will

begin to go back up again. Too little and you will make a new crater on the

Moon. Can you impress Captain Flash with your skill ?

*For VIC, use the cursor down key to increase thrust and the cursorright

key to decrease it.

Touchdown: TRS-80 version

20 CLS
30 CLEAR 200
31 B*=STRING*<25,131)
33 M1*=CHR*(194)+STRING*<2,176>
34 M2*=" "+STRIN6*(4,191)
35 M3*=CHR*(131)+CHR*(135)+STRiNG*

(2,131>+CHR*(139)+CHR*(131)
40 GOSUB 250
50 GOSUB 300
60 C=l:GOSUB 390
70 A=1:B=F:GOSUB 460
80 A=2:B=ABS(V):GOSUB 460
90 A=3:B=H:GOSUB 460
lOO A=4:B=T:GOSUB 460
HO GOSUB 530
120 Vl=V-T/20+G : F=F T/IO
130 H1=H—(V+Vl>/lO
140 C=0:GOSUB 390
150 IF HI<0 THEN 200
160 H=H1:V=V1
170 IF H< = lOO THEN 60
180 GOSUB 590
190 GOTO 220
200 H=0:C=1:GOSUB 390
210 GOSUB 660
220 END
250 H=100:F=100:T=0
260 V=INT(RND(O)*10+6)
270 G=INT(RND<0)*40+41)/100
280 RETURN
300 FOR X=80 TO 127
320 SET (X,47—INT(RND(O)*5)>
330 NEXT
340 PRINT "GRAVITY=”; G
350 PRINT 3192,"FUEL:"

126

355 PRINT 3384,"VEL:"
360 PRINT 3576,"HEIGHT:"
365 PRINT 3768,“THRUST:”
370 RETURN
390 Y=818—64*INT(H/8)
400 PRINT 3Y,; : IF C=i THEN PRINT

Ml*; ELSE PRINT CHR*(196);
410 PRINT 3Y+64,; : IF C=1 THEN

PRINT M2*; ELSE PRINT CHR*
(198);

420 PRINT 3Y+128,; : IF C=1 THEN
PRINT M3*; ELSE PRINT CHR*
(198)

440 RETURN
460 Y= <A*3+1)*64
470 PRINT 3Y,CHR*(217) ;
480 FRINT 3Y,LEFT* <B*,B/4 >;
510 RETURN
530 I*=INKEY*
540 IF I*="A" THEN T=T+4 : IF

T>iOO THEN T=1OO
550 IF I*="D" THEN T=T-4 : IF

T<0 THEN T=0
560 IF T>F THEN T=F
570 RETURN
590 CLS
600 FOR 1=1 TO 20
610 PRINT 3INT(RND(O)*1024),"*”
620 NEXT
630 PRINT 3470,"LOST IN SPACE!!"
640 RETURN
650 CLS
660 PRINT "LANDED AT VEL ”;

INT((V+Vl> *5)/lO
670 IF (V+Vl)<8 THEN PRINT "SAFELY

ELSE PRINT "ALL DEAD"
680 RETURN

Touchdown: VIC 20 version

20 PRINT CHRt(147)CHRt<5>;
25 POKE 36979,8
30 DEF F.NR < X) = I NT (RND < 1 > * X +1 >
40 GOSUB 250
50 GOSUB 300
60 C=1:GOSUB 390
70 A—1:B=F:GOSUB 460
SO A=2:B=ABS(V):GOSUB 460
90 A=3:B=H:GOSUB 460
100 A=4:B=T:GOSUB 460
HO GOSUB 530
120 V1=V T/20+G : F=F-T/10
130 H1=H-(V+Vl)/lO
140 C=0:GOSUB 390
150 IF HI 0 THEN 200
160 H=H1:V=V1'
170 IF Hr=100 THEN 60
180 GOSUB 590
190 GOTO 220
200 H=0:C=1:GOSUB 390
210 GOSUB 660
220 END

460 FOR X=0 TO 9
470 Y=A*88+X+7724
430 IF X-B/IO THEN POKE Y,102 :

GOTO 500
485 IF X<B/10+.5 THEN POKE Y,92 :

GOTO 500
490 POKE Y,32
500 NEXT
510 RETURN
530 GET It
540 IF It="|QJ" THEN T=T+4 : IF T>100

THEN T = 1OO
550 IF It^flj” THEN T=T-4 : IF T<0

THEN T=0
560 IF T>F THEN T=F
570 RETURN
590 PRINT CHRt(147)
600 FOR 1=1 TO 20
610 POKE 7679+FNR(506),42
620 NEXT
630 PRINT "LOST IN SPACE!"'
640 RETURN
650 PRINT CHRt(147)"LANDED"
660 PRINT "AT VEL ";INT((V+Vl>*5)/lO
670 IF (V+Vl)<8 THEN PRINT "SAFELY"

:RETURN
680 PRINT "ALL DEAD":RETURN

250 H=1OO:F=1OO:T=0
260 V=5+FNR(10)
270 G= < FNR < 40)+40)/1OO
280 RETURN
300 FOR X=8178 TO 8185
320 POKE X,98+2*FNR(3)
330 NEXT
340 PRINT "GRAVITY=";G
350 PRINT "jQiJFUEL: "
355 PRINT "[QigBVEL : "
360 PRINT "0G1BHEI6HT: "
365 PRINT "1Q|®THRUST: "
370 RETURN

[QJ is cursor down key

[7] is cursor right key

128

Touchdown: ZX81 version

20 CLS
30 LET B*="t66666666666666666666I
40 GOSUB 250
50 GOSUB 300
60 LET C=1
65 GOSUB 390
70 LET A=1
75 LET B=F
77 GOSUB 460
80 LET A=2
85 LET
87 GOSUB 460
90 LET A=3
95 LET B=H
97 GOSUB 460

L—ci i nx —n vvtvi/ / iv
LET C=0 530
GOSUB 390 540
IF H1<0 THEN GOTO 200 545
LET H=H1 550
LET V=V1 555
IF HOIOO THEN GOTO 60 560
GOSUB 590 570
GOTO 220 590
LET H=0 600
LET C=1 610
GOSUB 390
GOSUB 660 620
STOP 630
LET H=100 640
LET F=100 650
LET T=0 660
LET V=5+INT(RND*10+1)
LET G=INT<RND*40+40>/lOO 670
RETURN 675
PRINT AT 21,20;"CSDADSADAS3"
PRINT AT 0,0;"GRAVITY=";G 680
PRINT AT 3,0;"FUEL:"
PRINT AT 7,0;"VEL:"
PRINT AT 11,0;"HEIGHT:"
PRINT AT 15,0;"THRUST:"
RETURN
LET Y=(lOO—H)/6+1
IF 0=0 THEN GOTO 425
PRINT AT Y,24;"C341"
PRINT AT Y+l ,23;"CQ W3"
PRINT AT Y+l,23;"tTGGYI"
GOTO 440

260
270
280
300
340

Touchdown: ZX Spectrum version

20 CLS
30 DEF FNr (x)=INT (RND* x +1)
40 GOSUB 250
50 GOSUB 300
60 LET c=0: GOSUB 390
70 LET a=l: LET b=f : LET c=2*(f<25)
75 GOSUB 460
80 LET a=2: LET b=ABS v:

LET c=4*(v<0>
85 GOSUB 460
90 LET a=3: LET b=h: LET c=2*(h<25>
95 GOSUB 460
lOO LET a=4:. LET b=t: LET c=0
105 GOSUB 460
HO GOSUB 530
120 LET vl=v—t/20+g: LET f=f-t/10
130 LET h1=h—(v+v1>/1O
140 LET c=l: GOSUB 390
150 IF hl<0 THEN GOTO 200
160 LET h=hl: LET v=vl
170 IF h<=100 THEN GOTO 60
180 GOSUB 590
190 GOTO 220
200 LET h=0: LET c=0: GOSUB 390
210 GOSUB 650
220 STOP
250 LET h=100: LET f=100s LET t=0
260 LET v=5+FNr<10)
270 LET G=(FNr(40)+401/100
280 RETURN
300 PLOT 180,8
310 FOR x = l TO 15
320 DRAW 5,FNr(3)-2
330 NEXT x
340 PRINT "Gravity=";g
350 PRINT ”,,Fuel:,,””"Vel:"
360 PRINT "Height: " ” ” "Thrust: "
370 RETURN
390 INVERSE c
400 LET y=h*1.3+10

PLOT 200,y: DRAW 34,0
DRAW -4,20: DRAW -13,10
DRAW -13,-10: DRAW -4,-20
RETURN
LET y=172-a*32
INK c
PLOT O,y
DRAW b,0
DRAW INVERSE 1,1OO-b,O
RETURN
LET i*=INKEY*
IF i*="a" THEN LET t=t+4 :
IF t>100 THEN LET t=100
IF i*=”d" THEN LET t=t-4 :
IF t<0 THEN LET t=0
IF t>f THEN LET t=f
RETURN
CLS
FOR i=1 TO 20
PRINT AT FNr(21),FNr(31);"
NEXT i
PRINT "Lost in space1!!"
RETURN
PRINT AT 0,0;"Landed at
INT((v+v1>*5)/lO’
IF (v+vl)<8 THEN GOTO 680
PRINT "All dead": RETURN
PRINT "Safely": RETURN

410
420
430
440
460
470
480
490
500
510
530
540

550

560
570
590
600
610
620
630
640
650

660
670
680

Touchdown: BBC version

20 MODE 5
30 *FX 12,1
40 PROCSETVAR
50 PROCDISPLAY
60 PROCMODULE(H,3)
70 PROCBAR(1,F,3+2*(F<25))
80 PROCBAR(2,ABSV,3+ t V< O)>
90 PROCBAR(3,H,3+2*<H<25))
lOO PROCBAR(4,J,3)
110°PROCTHRUST
120 Vl=V~T/20+G : F=F-T/1G
130 H1=H-<V+V1)/10
40 PROCMODULE(H,D)
50 IF HI O THEN 200
60 H=H1:V=V1
70 IF H< = 1OO THEN 60
80 PROCLOST
90 SOTO 220

200 PROCMODULE(O,2)
210°PROCLANDED
220 *FX 120
230 END
240 DEF PROCSETVAR
250 H=1OO:F=1OO:T=0
260 V=5+RND<10)
270 G= < RND(40)+40)/1OO
28$ endproc
290 DEF PROCDISPLAY
300 MOVE 800,30
310 FOR X =800 TO 1280 STEP
320 DRAW X,10+RND < 40)
330 NEXT
340 PRINT ”GRAVITY=";G
350 PRINT ” ’’"FUEL:"’ ” '’
360 PRINT ’"""HEIGHT:”’'
370 ENDPROC
380 DEF PROCMODULE(H,C>
390 GCOL 0,C
400 Y=H*8.5+150
410 MOVE 1040,Y : PLOT 1,-
420 PLOT 1,-8,-60 : PLOT 1
430 PLOT 1,-8,60 : PLOT 1,
440 ENDPROC
450 DEF PROCBAR(N,V,C>
460 Y—1OOO — 192 *N
470 GCOL 0,C
430 MOVE O,Y : MOVE O.Y-16

Touchdown: Apple version

15 HOME
20 HGR
30 DEF FNR(X > = INT < RND(1)* X +1>
40 GOSUB 250
50 GOSUB 300
60 C=3:GOSUB 390
70 A=1:B=F:GOSUB 460
80 A=2:B=ABS(V):GOSUB 460
90 A=3:B=H:GOSUB 460
lOO A=4:B=T:GOSUB 460
110 GOSUB 530
120 V1=V—T/20+G : F=F-T/10
130 H1=H-(V+V1)/10
140 C=0:GOSUB 390
150 IF HI<0 THEN 200
160 H=H1:V=V1
170 IF H< = 1OO THEN 60
180 GOSUB 590
190 GOTO 220
200 H=0:C=3sGOSUB 390
210 GOSUB 660
220 END
250 H=100:F=100:T=0
260 V=5+FNR(10)
270 G=<FNR<40)+401/100
280 RETURN
300 HCOLOR=3
305 HPLOT O,155

310 FOR X=0 TO 279 STEP 5
320 HPLOT TO X,159-FNR(lO)
330 NEXT
335 FOR 1=1 TO 30 :HPLOT FNR(279),

FNR(150)
337 NEXT
340 VTAB 21 : PRINT TAB(34);"G=";G
350 VTAB 21 : PRINT "FUEL:" :

PRINT "VEL:”
360 PRINT "HEIGHT:" : FRINT "THRUST:";
370 RETURN
390 HCOLOR=C
400 Y=(lOO-H)* 1.3
410 HPLOT 140,Y TO 120,Y+10
420 HPLOT TO 120,Y+20 :

HPLOT TO 160,Y+20
430 HPLOT TO 160,Y+10 : HPLOT TO 140,Y
435 HPLOT 155,Y+20 TO 160,Y+25
437 HPLOT 125,Y+20 TO 120,Y+25
440 RETURN
460 VTAB (20+A) : HTAB 8
470 INVERSE
480 PRINT SPC(B/4);
490 NORMAL
500 PRINT SPC(26—B/4>;
510 RETURN
530 1*="" : IF PEEK(-16384)>127

THEN GET I*
540 IF I*="A" THEN T=T+4 :

Adding to the programs
Here are some ideas for additions

you can make to the programs in

this book or to your own programs.

In most cases you won’t be able to

add these to a ZX81 with only IK as

the games themselves fill almost all

its memory space, but you should

find there is plenty of room on the

other computers.

Remember you will either have to

restrict your additions to the spare

line numbers in a program or

renumber the program. If you

decide to renumber, take care you

change all the GOTO and GOSUB

lines too.
■

Getting the computer to tell you
how to play

You can add a

section to any

program to make

the computer print

instructions telling

you what to do. The

easiest way to do

this is to add some lines, such as those

below, at the beginning of the

program and then put a sub-routine at

the end.

Making the computer ,
stop and wait for you jcohjeSST

I
\uP!

If your instructions are very long, you

may want to insert this sub-routine

which stops the program running at a

particular point until you press a key.

This way you can stop the instructions

scrolling off the top of the screen

before you have read them. Put a

GOSUB line at the place you want the

program to stop and then put this sub¬

routine at the end.

JOOO PRINT “PRESS A KEY TO CONTINUE '
ISZXIOIO IF INKEY*="" THEN GOTO IOIO
★1010 I*=GET*
•IOIO GET I*
▲IOIO GET I* :

1020 PRINT
1030 RETURN

• THEN GOTO 1010

Making the computer "talk" to
you

10 PRINT “TITLE OF GAME"
11 PRINT “DO YOU WANT TO”
12 PRINT "KNOW HOW TO PLAY?"
15 INPUT I*

SZX17 IF I*(1>="Y“ THEN GOSUB lOOO
★ ■▲#17 IF LEFT* <1$,11="Y” THEN GOSUB lOOO

main program goes here

You can make the computer ask you

questions and react to your answers.

For instance, here is an addition which

will make the computer refuse to play

with you unless your name begins with J.

132

lOOO PRINT “WHAT YOU HAVE TO"
IOIO PRINT "DO IS.“
1999 RETURN

You can add as many print statements

as you like for the instructions, just

remember to put a number and the s

word PRINT at the beginning of each ★■^

1 PRINT "WHAT IS YOUR NAME?"
2 INPUT I*
3 IF I*(1)<>"J" THEN GOTO lOOO
3 IF LEFT*<I*,1)<>”J“ THEN GOTO lOOO
4 PRINT "OK-YOU CAN PLAY."
5 PRINT "ARE YOU READY?"
6 INPUT J*

<7 IF J*(1)< >"Y" THEN GOTO 5
►7 IF LEFT*(J*,1)< >"Y" THEN GOTO 5

one. Restrict the length of the part

inside the quotation marks to the

number of characters your computer

can print on one line. Don’t forget to

put a RETURN line at the end or the

program won’t work.

main program here

lOOO PRINT "SORRY THIS GAME IS"
IOIO PRINT “ONLY FOR PEOPLE"
1020 PRINT "WHOSE NAMES BEGIN"
1030 PRINT "WITH J"

Here is another one where the
computer dares you to be brave
enough to play.

10 PRINT "VERY SCAREY GAME"
12 PRINT "ARE YOU BRAVE ENOUGH"
14 PRINT "TO TACKLE THE GREEN"
15 PRINT "HAIRY MONSTER?"
16 INPUT I*

S ZX17 IF I*<1)="Y" THEN GOTO 20
★■±•17 IF LEFT*(I*,1)="Y" THEN GOTO 20

18 PRINT "COWARD"
IV STOP

You could combine this with the
instruction sub-routine by taking lines
11 to 17 from the instructions section
on this page and putting them at lines
20 to 26 of this program. You can then
start the main program at line 30 and
add the instruction sub-routine at the
end.

cases you can add a single line to your
program at the place you want the
sound. In others, you need several
lines and it is best to put these in as a
sub-routine.

As an example, here is the sound of
a shot for the BBC. You can experiment
with where to put it in the program, but
you must give it a line number to make
it work:

SOUND 0,-15,5,10

At the back of the VIC manual you
will find some useful sub-routines for
sounds such as “laser beam”,
“explosion” and “red alert”. Put a
GOSUB line where you want the sound
to appear, number the sub-routine and
add a RETURN at the end of it.

Would you like another go?

Instead of typing RUN each time you
play a game, you can make the
computer ask you if you’d like another
go. Put these lines at the end of the
program, just before the last STOP
statement.

lOOO PRINT "DO YOU WANT ANOTHER GO?"
lOlO INPUT I*

SZX1020 IF I* < 1) = "Y" THEN RUN
★■±•1020 IF LEFT*(I*,1)="Y" THEN RUN

1030 PRINT "OK THEN - BYE"
1040 STOP

Change line
numbers according
to your program.

Adding sound effects

The BBC, VIC 20, ZX Spectrum and
some Apples are able to produce
sounds and you can add lines to your
programs to make them do so at
appropriate places. You could add an
explosion for instance, or a little tune
which plays if you win. All the
computers need different instructions
to make sounds though, so you will
have to look at your manual. In some

Special note for BBC and £
Spectrum users ★ t*

If you have a BBC or a ZX Spectrum
you may find that some of the games
in this book run too fast for you. You
will find a box next to these games
containing instructions for
changing the speed. Remember, to
slow the game up you always need
to use a higher number. Later
models of the BBC may run up to
twice as fast as the earlier models,
and this could make the games
appear impossible on the first run.
Be prepared to make big changes
to the speed number to correct this.

Writing your own games programs
As you work through the games in

the book, you will probably find

yourself making more and more

changes to them and eventually

wanting to write new games of your

own. On these two pages you will

find some hints on how to set about

doing this.

Before you start, it is a good idea to
stop and think about what your
computer can and cannot do.

*It can tell you the results of its
calculations and decisions and also
what is stored in its memory.

* Provided you use its language
correctly, it can do only exactly what
you tell it, even if it is silly.

Remember, when you are trying to
work out a game, not to include
anything which your computer won’t
be able to do.

Planning a game Writing the program

Before you can tell the computer how
to play your game, you must know
exactly how to play it and what the
rules are yourself. The computer will
need a series of simple logical
instructions, so work out your game in
your head or on paper first and then
break it down into simple steps.

Next write a plan (in English - don’t
try to use BASIC yet) of all the stages of
the game in order.

Here is a plan for a simple shooting
game, such as firing cannon balls at a
pirate ship or shooting laser beams at
an alien invader, to give you an idea.

PLAN
2) Print title mo

instructions

2) CHOOSE A TARGET

FOR THIS CrAtAE

3) BEGIN A LOOP TO

GIVE THE PLAYER

N COES

4-) GET A SHOT FROM

the Player

s) CHECK IF shot WAS

on target

6) PRINT MESSAGE

DEPENDING ON
ACCURACY OF SHOT

7) <j0 SACK FOR

ANOTHER qo IF SHOT

WAS UNSUCCESSFUL

The next stage is to convert your plan
into BASIC. Each step in your plan may
need several lines in BASIC. Don’t
forget to leave gaps when numbering
your program lines so you can go back
and add extra ones if you need to.

Do a first draft of the program on
paper first and then start testing on the
computer. Your computer will spot
errors much more quickly than you
will see them yourself and may give
you a clue as to what is wrong.
Remember that debugging programs
is a long, tedious process even for
expert programmers, so don’t expect
to get yours right first time.

Once you have got the core of the
program working, you can add to it.
Scoring, extra comments, more
targets etc. can all be incorporated
later. You could add sections from the
programs in this book to your games.

Don’t expect to be able to write
exciting and original games straight
away. Keep your ideas very simple
and be prepared to adapt them as you
go along. You may find you have
included something in your game
which is easy for humans to do but
very difficult for a computer. As you
get more experienced you will begin
to know instinctively what your
computer can do and find it easier to
write programs for it.

Summary of BASIC
This section lists some common BASIC words and describes what they

make the computer do and how they are used. Most of them have been used

in the programs in this book, so you can check back through the book to see

how they work in a game. Not all the words can be used on all the

computers mentioned in this book. The conversion chart on page 96 shows

what you can use instead.

LET tells the computer to label a section of its
memory and put a particular value in it e.g. LET
A=6 means label a section of memory “A” and put
the value 6 in it. “A” is called a “variable” and putting
something in it is called “assigning a value to a
variable”.

Some variable labels are followed by a dollar
sign e.g. A$. This means they are for “strings”,
which can contain any number of characters,
including letters, numbers and symbols.

PRINT tells the computer to display things on the
screen and you can use it in several ways:

A message enclosed in quotation marks with
PRINT in front of it will be displayed on the screen
exactly as you typed it. The section inside quotes
does not have to be in BASIC, it can be anything you
like.

PRINT followed by a variable label e.g. PRINT A
or PRINT A$ tells the computer to display the
contents of that variable on the screen.

PRINT can also do calculations and then display
[the results e.g. PRINT 6*4 will make the computer
[display 24.

You can use PRINT by itself to leave an empty
line.

RND tells the computer to choose a number at
random. Different computers use different forms of
RND and you can see what these are in the
conversion chart on page 96. On Sinclair computers

by itself produces a number between 0 and
199999. You can vary the limits of the number it

'chooses by multiplying RND and adding to it. E.g.
RND *20 produces a number between 0 and
19.99999999, while RND*20+1 produces a number
between 1 and 20.99999999.

See INT for how to produce only whole numbers.
See CHR$ for how to produce letters and other

keyboard characters at random.

INT is short for integer, which means whole
number. For positive numbers, it tells the computer
to ignore everything to the right of the decimal
point. E.g. INT(20.999) is 20. For negative numbers,
it ignores everything to the right of the decimal
point and “increases” the number to the left of it by
one e.g. INT(- 3.6) is - 4.

INT is often used with RND, like this:
INT(RND * 20 +1) which tells the computer you want
it to choose a whole number between 1 and 20.

CHR$ converts numbers into letters. Apart from the
ZX81, all the computers in this book use the
ASCII*set of keyboard characters in which each
character corresponds to a certain number. E.g.
letter A has the code number 65 and PRINT
CHR$(65) will display an A on the screen.

You can use CHR$ with INT and RND to make the
computer select random letters, like this:

CHR$(INT(RND *26+65))
This line will produce random letters on a ZX
Spectrum (see conversion chart for other
computers).

FOR is used to start a “loop” which will make the
computer repeat part of a program a certain
number of times. It must be followed by a variable
(such as G to stand for the number of goes allowed
in a game), and the variable must be given start and
end values (such as 1 TO 10.)

The end of the loop is marked by a NEXT line
(NEXT G in this example) which increases the value
of the variable by 1 each time and then sends the
computer back to the FOR line again. When the
variable reaches its end value, the computer
ignores the NEXT line and carries on to the line
which follows it. Every FOR must have a NEXT or
you will get a bug.

INPUT labels a space in the computer’s memory,
prints a question mark and then waits for you to
type something which it can put in this memory
space. It will not carry on with the rest of the
program until you press RETURN, ENTER or
NEWLINE.

You can use number or string variables with
INPUT, but if you use a number variable the
computer will not accept letters from you.

* American Standard Code for Information Interchange (see page 95)

INKEYS checks the keyboard to see if a key is
being pressed and if so which one. It does not wait
for you to press a key like INPUT does. It is usually
used in a loop which makes the computer go round
checking the keyboard lots of times. This is
because computers work so quickly, you wouldn’t
have a chance of pressing a key in the time it takes
the computer to do one check.

If you haven’t pressed a key before the loop
finishes, the computer carries on with a string
containing nothing (called a “null” string).
NB Apple and VIC do not use INKE Y$.

GET is used instead of INKE Y$ on VIC and Pet
computers.

GOTO makes the computer jump up or down the
program ignoring the lines in between. You must
put the number of the line you want it to jump to
after the GOTO instruction.

GOSUB tells the computer to leave the main
program and go to a sub-routine. GOSUB must be
folowed by the number of the first line of the sub¬
routine. At the end of the sub-routine you must have
a RETURN line. This sends the computer back to
the main program to the line immediately following
the GOSUB line. A GOSUB without a RETURN in a
program will give a bug.

IF... THEN tells the computer to decide if an
expression is true or false, and do different things
depending on the answer. It is used with the
following signs, and also with AND or OR:

=thesameas
dess than
>greaterthan

<=less than or the same as
>=greater than or the same as
Onot the same as

If the computer decides an expression is true, it
carries on to do the instruction which follows
THEN. If it decides it is false, it ignores the rest of
that line and goes on to the next one.

CLS is used to clear everything off the screen
without removing or changing anything in the
memory. It is useful for removing the listing from
the screen at the beginning of a RUN or in games
when you want the player to react to something
seen for a limited amount of time. (NB Apple and
VIC do not use CLS - see conversion chart).

HOME is used by Apple computers instead of CLS
to clear the screen.

ABS ignores plus and minus signs in front of
numbers and takes their “absolute” values. E.g.
ABS(-10) is 10 and ABS(+10) is also 10.

VAL takes the numeric value of numbers written as
strings. In effect, it tells the computer to ignore the
dollar sign and treat the string as an ordinary
number variable. E.g. if I$=“60” then VAL(I$) is the
number 60.

ASC converts a character into its ASCII code
number e.g. ASC(“3”) gives 51. The expression in
brackets must be a string e.g. ASC(A$) or
ASC(“20”).
NB ZX81 and ZX Spectrum do not use ASC, though
the Spectrum does use the ASCII code.

CODE is used by ZX81 and Spectrum in place of
ASC. Like ASC it must always be followed by a
string. Remember that the ZX81 uses different code
numbers from the other computers.

TAB moves the cursor across the screen to a
specified column number. It is usually used with
PRINT to display something in the middle of the
screen. The number of spaces you want the cursor
moved is put in brackets after TAB. The maximum
number you can use depends on the screen width
of your computer.

SGN tells the computer to find out the sign of a
number. It produces -1 for a negative number, 0
for zero and +1 for positive numbers. E.g.
SGN(—30) is -1, SGN(7) is +1 and SGN(O) is 0.

DIM tells the computer how much memory space
will be needed for an “array” (a row or a grid). E.g.
DIM X(6) tells the computer to set aside an area
large enough to contain a row of 6 elements and
labelled X. DIM A(8,8) means a memory space
labelled A and big enough to take 8 elements
across and 8 down is needed. The number of
elements of data used in the program must
correspond to the numbers in brackets after DIM
or you will get a bug.

SQR takes square roots of numbers. E.g. SQR(16)
gives the answer 4.

SIN calculates the sine of an angle. In a right-angled
triangle the length of the side opposite an angle,
divided by the length of the hypotenuse (the side
opposite the right angle) is the sine of that angle.
When you use SIN in a program, the angle you are
using it with must be measured in radians, not
degrees.

ATN is one of the trig, functions which computers
can calculate (see also SIN above). It stands for
arctangent and it is important to remember that it
gives an answer in radians, not degrees. You will
need to use a maths book to find out how this works
if you do not already know about it.

STOP tells the computer not to go any further in a
program. Computers other than the ZX81 can use
END instead.

PEEK is a way of finding out what is in a specific
area of the computer’s memory. You need to use it
with a number which specifies an “address” in the
memory.
NB not used on BBC.

POKE is a special way of putting information in the
computer's memory by using a memory "address".
NB not used on BBC.

Here are the changes to make the
bugs appear in 5 places:

Answers
You may find that your answers to

some of the puzzles are different to

the ones given here. As long as they

work on your computer then this
doesn’t reallv matter but check to s 2x80 G0SUB 220+20*r aoesn i realty matter, nut cnecK to *BA#so 0N R B0SUB 240,260,280,300,320
see if they are as neat and simple as

the answers in the book.

70 LET R=INT(RND*5+1

Page 101
Starship Takeoff

Lines 30 and 40 select the numbers
which determine what the force will
be. To increase the range of possible
forces, you can increase either the 20

in line 30, or the 40 in line 40, or both of
these numbers. Increasing the range
of forces will obviously make the
game more difficult.

Page 103
intergalactic Games

Change lines 222 and 230 as follows:

240 LET D=5
245 LET A=1
250 GOTO 350
260 LET D=1
265 LET A=9
270 GOTO 350
280 LET D=5
285 LET A=1B
290 GOTO 350
300 LET D=10
305 LET A=7
310 GOTO 350
320 LET D=15
325 LET A=15
330 GOTO 350

To add more bugs, change the 10 in
lines 30 and 220 to a higher number.
(Make sure you use the same number
for both lines.)

Page 109
Moonlander

222 LET B=B+INT < lOOO/G)
230 GOTO 20

and add a new line 15:

15 LET B=0

Page 105
Evil Alien

Change lines 20 and 30 and add a new
line 25 as follows:

20 PRINT "HOW DIFFICULT? (6 TO 30)"
25 INPUT S
30 LET G=INT<S/3>

Page 107
Beat the Bug Eyes

To make the bugs appear in more than
four places on the screen, you need to
put a higher number than 4 in the
middle of line 70, change line 80 and
add more sub-routines at the end of
the program - one for each extra
position.

To increase the speed allowed for a
safe landing, you need to make
changes to lines 230,240 and 250. You
can use any numbers you like - the
higher they are the easier the game
will be. In this example, you are
allowed a speed of 2 for a good
landing and 7 for an OK landing:
230 IF VI>7 THEN PRINT "YOU CRASHED

- ALL DEAD"
240 IF VI>2 AND Vl<=7 THEN PRINT "OK

-BUT SOME INJURIES"
250 IF VI<=2 THEN PRINT "GOOD LANDING"

Page 111
Monsters of Galacticon

Four ways of making this game harder
are:

1 Start the game with less people in
the group by putting a smaller number
than 5 in line 40.

2 Increase the number of monsters by
changing the 4 in lines 20 and 30. Add 141

extra monster names at lines 81 to 89
using M$(5) and M$(6).

3 Reduce the number of goes allowed
by altering the 8 in line 160.

4 Increase the chance of the monster
being angered in line 330 by
increasing .4 a little.

Page 113
Alien Snipers
In this game, N is the code number. To
change the scoring to fit the code
number you need to increase the
score by N each time instead of 1. So,
change line 190 as follows:

S ZX190 IF I*=CHR*(CODE(L*>+N> THEN
LET S=S+N

★ ■A«190 IF I*=CHR*(ASC(L*>+N> THEN
LET S=S+N

Page 115
Asteroid Belt

You need to change line 260 so that the
computer adds the number of stars to
your score instead of 1. The number of
stars is controlled by the value chosen
for N in line 70, so, as in the puzzle
above, you need to add N to the score.
You also need to change line 320.
260 LET S=S+N
320 PRINT "YOU SCORED ";S;" POINTS"

Page 117
Trip into the Future

3 Line 170 contains the number which
determines the length of your lifetime.
Change the 50 to a higher number for a
longer lifetime.

Page 119
Death Valley

You can make the valley longer by
changing the number in line 30 to
something higher than 200.

Page 121
Space Mines

Add these lines to make the computer
ask if you would like another game:

645 PRINT "ANOTHER GAME? (TYPE Y OR N)"
646 INPUT A*
647 IF A*="Y“ THEN GOTO lO

You must then a new line at 5 and
change line 30 to add the money you
ended up with at the end of the game
to the money allowed for the new
game:
5 LET M=0
30 LET M=M+INT(RND*50+10)*P

(Make sure you use the correct
version of RND for your computer.)

1 To increase the range of years
which must elapse before you return
to Earth, change the 100 in line 30 to a
higher number, e.g. 150, like this:

30 LET T=INT(RND*150+25)

2 To increase the accuracy from 5 to 2
years, change the 5s in lines 180 and
190 to 2, like this:

180 IF ABS(T-T2><=2 THEN PRINT "YOU
ARRIVED ON TIME"

190 IF ABS(T—T2)>2 THEN PRINT "NOT
EVEN CLOSE" 142

Index
ABS, 79, 139
addition, 64, 82
address, 28
Age guessing program, 67
Age program, 66
amplifier, 21
AND gate, 27
animated graphics, 19, 84
Apple II computer, 45
arithmetic and logic unit (ALU),

25
arrays, 87, 88, 89
ASC, 139
ASCII, 28, 95
Atari 400 computer, 43
ATN, 140
Atom computer, 44
BASIC, 8, 9, 10, 12-13, 28, 55, 57,

58, 84, 136-140
BBC micro, 44, 69, 70, 91, 133
binary codes, 26
Birthdays program, 83
bit, 26
blind people, micros for, 21
brackets, 82
BREAK, 63
bugs, 10, 14, 15, 16, 56, 57, 59, 76,

88, 90-91
bus, 24
byte, 7, 26, 28
calculator stack, 29
cartridges, 10
cassette recorder, 5, 10, 11, 14,

16, 38, 53, 58, 94
cassettes, 10, 11, 14, 16, 94
central processing unit, 4, 6, 23,

29
chips, 22-23, 24-25, 26-27, 28-29,

30, 31
CHR$, 137
Circles program, 79
circuits, 22, 24-25
Clever computer program, 69
CLS, 58, 139
CODE, 139
Codemaker program, 81
Colour Genie computer, 46
commas, 61, 64, 65, 90, 91
Commodore 64 computer, 46
computer aided design, 36-37
computer languages, 6,12,52,54
control port, 34
Conversion program, 79
co-ordinates, 18, 70
COPY, 59
counters, variables used as, 69
CPU, see central processing unit
cursor, 9
daisy wheel printer, 39

data, 4, 6, 17, 52, 60-63, 66, 86-87
DATA, 61, 87, 88, 91
data tapes, 16
debugging programs, 59, 90-91
delay loops, 75, 76
DELETE key, 59
dialects, 10, 13, 98
DIM, 88, 140
disabled, micros for the, 36
disk drive, 11, 16, 17, 38
display file, 29
division, 64, 82
Dragon computer, 43
dot matrix printer, 39
edge connector, 23
EDIT, 59
educational programs, 11
Eight times table program, 74
Electron computer, 42
electronic mail, 33
END, 59, 140
ENIAC, 41
ENTER key, 58
Epson HX-20 computer, 46
error messages, 15, 59, 84, 91
ESCAPE, 63
Face program, 59
fibre optics, 32
floppy disks, 10, 11, 16, 17, 38
flowchart, 57
FOR ... NEXT, 74-77, 137
French lesson program, 66
Funny poems program, 86-89
gates, 26, 27
GET, 138
GOSUB, 78-79, 138
stack, 29

GOTO, 67, 138
graphics, 18, 40,
programs, 70-71, 73, 77, 79, 84-

85, 126
tablet, 18, 38, 39, 71

graphs, 82
greather than, 66
Greedy computer program, 75
hard copy, 17
hardware, 6
Hello loop program, 74
hex, 29
high-level languages, 28, 55
high resolution graphics, 19, 38,

70, 77, 85
HOME, 139
IF ... THEN, 66-67, 138
INKEY$, 138
input, 4
INPUT, 62-63, 137
INT, 72, 137
integrated circuit, 22, 30

interface, 16, 34, 38, 40
interpreter, 6, 7, 28, 54, 58
joysticks, 38
Jupiter Ace computer, 46
keyboard, 4, 5, 6, 8, 40, 52
kilobyte, 7
LEFTS, 81-81
LEN, 80
less than, 66
LET, 60, 136
light pen, 18, 19, 20, 38, 39
Line pattern program, 85
LIST, 59
listings, 10, 14
loading programs, 14, 16, 17, 94
loops, 74-77
loudspeaker, 21
low-level languages, 28, 29
Lynx computer, 46
machine code, 6, 16, 21, 26, 27,

28, 29
mainframe computer, 23
maths and sums, 64, 65, 82
Maths program, 67
medicine, micros in, 36
memory, 4, 6, 7, 11, 14, 17, 54, 60,

62, 70
microelectronics, 30
microprocessor, 23,24-25,26,31,

34, 40
Z80 processor, 28, 40
6502 processor, 28, 40

MIDS, 80
minicomputer, 23
mnemonics, 29
MODE, 70
model railway control, 34
modem, 32, 38
modulator, 23
monitor, 28
motherboard, 38
multiplication, 64, 82
music programs, 20
nested loops, 76-77
networks, 32, 40
NEW, 63
Newbrain computer, 46
NEWLINE key, 58
NEXT, see FOR
NOT gate, 27
number variables, 60, 61, 62
Numbers program, 79
OR gate, 27
Oric computer, 46
output, 4
paddles, 38
Pascal, 12, 55
Password program, 12
Pattern repeat program, 77 143

PC 1500 computer, 42
PEEK, 28, 29, 140
peripherals, 38
PET computer, 45
Pilot, 55
pixels, 18, 70-71, 73, 77, 85
PLOT, 70-71, 84, 85, 91
plotter, 38, 39
Poetry writing program, 63
POKE, 29, 140
port, 16, 34
portable micros, 37
power supply, 5, 22, 23
Prestel, 10, 40
PRINT, 58-59, 64-65, 136
printed circuit board (PCB), 22
printer, 16, 17, 38, 39, 53
print-outs, 17
program, 4, 6, 52, 54, 55, 56-57
line numbers, 59, 78, 91
plans, 57, 83, 90-91, 135

puck, 71
pugs, 57
quartz crystal clock, 23, 25
Quiz program, 79
quotation marks, 58,60,64,65,90
QWERTY keyboard, 40
RAM (random access memory),

7, 8, 16, 22, 25, 29, 38, 53
chips, 22, 25, 29
packs, 7, 38

random,
number tester program, 76
numbers, 72-73
pattern program, 73

READ, 61
read only memory, see ROM

read/write memory, 7
REM, 75
RETURN, see GOSUB

key, 58
RIGHTS, 80
RND, 72-73, 136
robots, 34-35
ROM (read only memory), 7,

53
cartridges, 10
chips, 22, 25, 28

RS232 interface, 17, 38
RUBOUT key, 59
RUN, 58-59
Santa Clara Valley, 30
satellites, 32, 33
saving programs, 16, 94
screen, 5, 6, 8, 14, 18, 19
sizes, 40, 95

scrolling, 40
semi-colons, 64, 65, 69
sensors, 34, 35
SGN, 140
shift key, 8, 9
silicon, 22, 24-25, 30
Silly sums program, 74
SIN, 140
Sinclair computers, 87, 88, 90, 91
see also under ZX81 and ZX
Spectrum

sockets, 4, 9, 16, 23, 34
software, 6, 28, 40
sound effects, 21, 133
Space attack program, 73
Space commando program, 68
Space Shuttle, 35
spacing words on the screen, 64,

69

speech synthesis, 21
Splash game program, 13
SQR, 64, 140
STEP, 75
STOP, 67, 78, 140
strings, 60-61, 62, 80-81, 138
subroutines, 78-79, 91, 138
subtraction, 64, 82
syntax errors, 15
synthesizer, 20-21
system variables, 29
TAB, 139
teletext, 33
THEN, see IF
thermal printer, 39
TI-99/4 computer, 43
transistors, 26, 27, 30
TRS-80 computer, 44
TV set, 4, 5, 10, 38
UNPLOT, 70, 84
user groups, 11
VAL, 139
valves, 30, 31
variables, 60-63, 65, 66, 80, 136
as counters, 69

VIC 20 computer, 42, 133, 138,
139

viewdata, 10
visual display unit (VDU), 4
voltage, regulator, 22
weather forecasting, 36
Weather program, 66
word processors, 37
ZX Spectrum computer, 41, 133,

137, 139
ZX81 computer, 41, 61,67, 69,80,

132, 139, 140

First published in 1983 by Usbome Publishing Ltd,
20 Garrick Street, London WC2E 9BJ, England.
© 1983 Usbome Publishing Ltd

The name Usbome and the device are Trade Marks of Usbome Publishing Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording

144 or otherwise, without the prior permission of the publisher.

V

Understanding & programming the micro
___/

This is a colourful introduction to the world of microcomputers for beginners

of all ages. It begins by explaining how computers work, what they can do and

why you might want to own one, and includes a buyer’s guide which lists the

main features of most of the home computers currently available. Then

follows a step-by-step guide to programming in BASIC, the language used by

most microcomputers. This section includes problems to solve and programs

which will run on any microcomputer. At the back of the book there are 13

program listings* for spacegames. Explanations of how the programs work,

suggestions for changing them and puzzles are given alongside the listings,

and there are hints on writing your own games programs. With a look-up

guide to BASIC, a BASIC conversion chart and a glossary of computer jargon,

this book will be an invaluable guide to anyone who wants to know about

microcomputers.

*The spacegames programs will work on the following computers: BBC,

ZX Spectrum, ZX81, VIC 20, Pet, Apple andTRS-80.

The material in this book is also available in three separate books with titles:

Understanding the Micro, Introduction to Computer Programming and

Computer Spacegames.

ISBN 0 86020 694 7

